
Buffered Hash Table: Leveraging DRAM to
Enhance Hash Indexes in the Persistent Memory

Chen Zhong, Prajwal Challa, Xingsheng Zhao, Song Jiang
University of Texas at Arlington

Arlington, TX
{chen.zhong, vxc5208, xingsheng.zhao}@mavs.uta.edu, song.jiang@uta.edu

Abstract—As a high-speed byte-addressable storage media
similar to DRAM, Intel Optane DC Persistent Memory (PMem)
has drawn the interest from the research community for its
high throughput and low latency. These properties propel the
migration of in-DRAM data structures, such as hash tables,
to the PMem. However, existing PMem hash table designs do
not recognize that the PMem is also a block device with an
access unit of 256 bytes. Consequently, they carry out writes in
sizes that are an order of magnitude smaller than the PMem
access unit, leading to high write amplification. To improve their
performance, we propose Buffered Hash Table (BHT) design.
BHT batches multiple writes into in-DRAM buffers and then
merges them into hash table buckets in the PMem, reducing the
number of small writes. BHT also employs a PMem-based write-
ahead log to prevent data loss. Our experiments show that BHT
provides up to 2.3X and 2.8X higher write throughput, assuming
the DRAM space is sufficiently available, compared to the state-
of-the-art hash indexes, namely CCEH and Dash, respectively.

Index Terms—Persistent Memory, Hash Table, DRAM Buffer

I. INTRODUCTION

Intel Optane DC persistent memory (PMem), the first
commercially available high-speed persistent byte-addressable
device, has changed the paradigm on the distinct character-
istic features of memory and storage devices. Packing both
persistence and DRAM-like speeds, the PMem offers features
that make it a viable media for storing a program’s data
structures to support its execution. It is appealing to migrate
commonly used index structures, such as hash tables and B+
trees, that consume substantial portion of the memory space
to the PMem. The PMem provides a cost-effective platform
which is often of much larger capacity and less expensive com-
pared to DRAM, while simultaneously allowing these index
structures to survive a system crash. However, performance
of the indexes is also critical. It has been reported that index
operations may account for 14–94% of query execution time
in today’s in-memory databases [1] which makes performance
of indexes in the PMem a crucial aspect to focus on.

As we know, traditional in-DRAM index designs cannot
be used as-is in the PMem, as their underlying dynamic data
structures do not guarantee crash consistency, which could
leave them in an inconsistent state that cannot be recovered
after a crash. Consequently, much effort has been directed
towards designing crash-consistent indexes, such as CCEH [2],
Level Hashing [3], wB+ tree [4], and FAST & FAIR [5] etc.
Many of them were proposed before the release of the Optane

PMem and the assumption in their designs is that persistent
memory is a "slower but persistent DRAM" [6].

It has been revealed that the Optane DC persistent memory
accesses data from/to its 3D-Xpoint media at a 256-byte
granularity (XPLine) in recent performance characterization
studies [6]–[8]. Any write smaller than 256 bytes becomes a
read-modify-write operation and results in a 256-byte write to
the physical media, causing potentially large write amplifica-
tion. It has also been observed that unless there are sequential
and large writes, the PMem’s write performance can be much
worse than its reported peak performance. This PMem write
performance issue is specially pronounced for writes to a hash
table, where writes are inherently small and are designed to
be hashed uniformly to the its buckets.

To tackle the write amplification issue in existing PMem
hash index structures, we propose BHT, a DRAM-PMem hy-
brid hash table design by incorporating in-DRAM write buffers
to improve performance of the in-PMem index structures.
Instead of redesigning a new hash table, BHT enhances an
existing in-PMem hash table design with auxiliary in-DRAM
write buffers to reduce write amplification by coalescing writes
in the buffers. Each buffer is responsible for buffering key-
value (KV) items into a bucket or a segment of buckets. BHT
also maintains a PMem-based write-ahead log for recovering
lost KV items in the buffers in case a system crash happens.

In this paper we implement BHT on a state-of-the-art PMem
hash table design, named Cacheline-Conscious Extendible
Hashing (CCEH) [2]. CCEH has a carefully designed crash-
consistency scheme for efficiency and minimizes disruptive
performance impact of hash table rehashing by employing
local hash segment resizing. However, without considering
Optane PMem’s block-like performance behavior, CCEH’s
writes suffer from a very large write amplification. Note that
as reads are assumed to take place randomly across the hash
table buckets, BHT is not designed for improving read perfor-
mance. A separate in-DRAM read cache may be deployed for
improving read performance if there exists a relatively small
set of frequently accessed KV items. However, such a read
cache is not in the scope of this study. The write buffers may
be dynamically applied only during write-intensive execution
period. We have implemented BHT on Intel Optane DC PMem
and extensively compare its performance with state-of-the-
art indexes, namely CCEH and Dash [9]. Our evaluation
results show that BHT’s throughput performance outperforms

1

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

Bucket Size (Byte)

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

op
s/

s)

seq_throughput
rnd_throughput

seq_wa
rnd_wa

4

8

12

16

20

W
ri

te
 A

m
pl

ifi
ca

tio
n

Fig. 1: Throughput and WA with different bucket sizes for
sequential and random insertions in the hash table.

both CCEH and Dash by 2.3X and 2.8X, respectively, when
sufficient DRAM space is provided as write buffers.

This paper is organized as follows. Section II introduces the
motivation for integrating DRAM buffers into a in-PMem hash
index structure and the background of PMem hash indexes.
Section III presents the BHT design. Section IV describes our
evaluation setup and results in comparison to state-of-the-art
indexes. Section V discusses related work. And Section VI
concludes the paper.

II. MOTIVATION AND BACKGROUND

This study is motivated by observations of large perfor-
mance variations with difference access patterns on the PMem.

A. Performance Impact of Access Patterns

To observe performance behaviors of a hash table in the
PMem, we design an experiment in which a bucket-based hash
table in the PMem is populated using two different methods. In
the first method, a sequence of keys are hashed into different
buckets until all buckets are full. That is, the buckets are
written in a random order. In the second method, the sequence
of keys are carefully arranged so that the buckets are filled
sequentially one at a time. That is, keys are written into each
bucket continuously and sequentially. In the hash table, there
are three million buckets, each as a pre-allocated fixed-size
memory space. Each write includes a 8-byte key and a 8-byte
value. We use xxHash [10] as the hash function. Figure 1
shows throughput of these two population methods (either
random or sequential writes) with different bucket sizes. In
the experiment we also measure amount of data written to
the PMem’s media using the ipmctl tool. We define write
amplification (WA) as the ratio of amount of data written to
the media and amount of program data written to the hash
table.

As shown in the figure, the throughput of sequential writes is
about 2.2X-5.1X as high as that of random writes. Note that, as
a hash function always attempts to scatter keys evenly across
different buckets, the random-write throughput represents the
normal performance one would expect on an in-PMem hash ta-
ble. Correspondingly, the random writes have a consistent 16X
WA (256B/16B). As the data set is much larger than PMem’s

16KB internal write-back buffer, each random and small write
has to be individually written back to the PMem’s media in a
block. In contrast, sequential writes have much smaller WAs
(from 1X to 5X). When the bucket size is a multiple of blocks
(e.g., 256 bytes or 512 bytes), the WA is as low as 1. The WA
becomes larger when the bucket size is more distant from its
next multiple of 256 bytes. The sequential-access throughput
increases with the increase of bucket size. For sequential
accesses, PMem’s internal prefetching mechanism is activated
to accelerate the read-modify-write operations. Therefore, it
is critical to use sequential and large writes for PMem’s high
performance. The potential of performance improvement by
organizing small writes into larger ones is very large.

B. In-PMem Extendible Hash Table

As hash tables naturally receive random writes into its
buckets and its in-PMem variants have a large performance
improvement potential, we focus on addressing the issue of
small writes in hash tables in this work. In particular, we de-
velop our design on a highly optimized hash table – Extendible
Hashing [11]. Unlike traditional hashing, extendible hashing
avoids a full table rehashing. Instead, when a collision occurs
at a filled bucket, it carries out rehashing locally. Extendible
hash table is divided into two layers. The first layer is a bucket
address table named the directory. Entries of the directory
are indexed by either MSBs (Most Significant Bits) or LSBs
(Least Significant Bits) of keys and store the pointers to the
buckets. The Global Depth, G associated with each directory
entry, represents the number of bits that are used to categorize
the hash buckets, allowing for a maximum of 2G buckets. The
Local Depth is used to decide the operation (rehashing) to
be performed in case an overflow occurs. Extendible hashing
avoids full table rehashing by only updating the pointers of
directory entries and rehashing individual buckets.

C. Cacheline-Conscious Extendible Hashing

Cacheline-Conscious Extendible Hashing (CCEH), is a
state-of-the-art extendible hash table design for persistent
memory. It inherits the design of extendible hashing. Knowing
that each memory access is due to a miss at the CPU cache
and therefore is at the unit of cacheline (64B), it sets up
each bucket’s capacity at 64 bytes. In the extendible hash-
ing, as number of buckets increases, corresponding increase
of directory size is memory-consuming. CCEH proposes an
intermediate layer between directory layer and buckets. This
new layer uses a collection of buckets, referred as segment, to
manage data, aiming to reduce the number of directory entries.

CCEH uses a three-level structure design where each entry
of the directory stores a pointer to a segment that consists
of a fixed number of buckets. Each bucket’s size is aligned
with cacheline size of 64B where up to 4 key-value items
can be stored for high memory-level parallelism. Segments are
indexed by G MSB bits of a hash key. Even with the presence
of a three-level structure, this indexing approach allows CCEH
to use L LSBs as a bucket index to locate the bucket in a
segment directly.

2

!!"#$%"&' !("#$%"&' (!"#$%"(' (("#$%"('

)*++,-)*++,-

)*++,-)*./,0)*./,01

...
...

...

2345"6,7 8*./,0"9:;,<

=>?83>"@,A05%"&

BC) $C)
10xx ...

D3>9;

$?./ C030*4

()"E"(F (G)"E"(F
H3I4 /J! /J(/JK1

C>?04
&)

Meta

Fig. 2: Illustration of structure of Buffered Hash Table

When a hash collision in a bucket occurs, CCEH allocates
a new segment and then copies data from overflowed bucket’s
segment to the new segment based on the MSB. To avoid
unnecessary copy-on-writes and split overhead, CCEH adopts
lazy deletion upon segment split where migrated data is not
immediately deleted after segment split in the old segment.
This data instead will be labeled as invalid and is overwritten
in subsequent insert transactions to reduce number of writes.
Since segment is a collection of multiple extendible hashing
buckets, it is very likely that the segment upon a single
bucket overflow will be split even though other buckets in the
same segment are not yet full. To improve space utilization,
CCEH uses linear probing. To guarantee index structure’s
crash consistency, CCEH uses 8-byte write atomicity and
flush/fence operations so that index’s integrity will not be
compromised by a system crash.

While CCEH adopts a Cacheline-Conscious structure for
cache efficiency, carefully arranges write sequence for crash
consistency, and judiciously applies locks for high concur-
rency, it misses a significant performance optimization oppor-
tunity – high efficiency with the PMem’s block write. This is
an issue shared by other existing index structures. Specifically,
small writes, each of a 16-byte KV item, are uniformly
distributed into a large number of segments in CCEH. Keys
are further uniformly hashed to buckets in the segment. These
are all random small writes, representing Achilles’ heel of the
PMem’s write performance.

III. THE DESIGN

In this section, we present BHT (Buffered Hash Table),
an optimized CCEH hash table design that leverages DRAM
buffers to avoid small random writes into CCEH’s segments
for high write efficiency. While this idea seems to resemble
use of write-back buffer in an OS for improving disk’s write
performance, the buffering service for optimizing PMem’s
write performance cannot be provided in an OS. Different
from the disk, whose access has to be via OS’s I/O layer,
the PMem is a byte-addressable device and is designed to be
accessed directly by user programs. It becomes prohibitive for
OS to be involved in the management of the write buffers.

Therefore, the design of the buffering component is inte-
grated into the hash-table structure. In the meantime, BHT
represents an example design for adding the buffer-based
optimization on an existing hash table. The design is intended
to lead to a general approach that can be similarly and
conveniently applied to other data structures. Therefore, a

major BHT ’s design principle is that addition of the buffering
function is non-disruptive to the existing CCEH data structure
design.

A. Integrating Buffers to CCEH

To follow the principle of minimizing modification of exist-
ing data structures, the design identifies contiguous memory
space where (time-wise) non-continuous and/or (space-wise)
non-contiguous accesses frequently occur, and assigns a write
buffer to turn them into one or multiple sequential block
writes. It does not attempt to change memory layout of the
existing in-PMem data structure for this purpose, as it could
demand substantial modifications of the data structure, which
could be in conflict with its other design objectives.

For the CCEH hash table, each segment consisting of mul-
tiple buckets represents a contiguous memory chunk receiving
random accesses. Accordingly, BHT associates a buffer to one
segment. It does not choose to attach buffers to individual
buckets because a bucket can be too small (64 bytes by default)
to effectively reduce write amplification.

By (logically) attaching a write buffer to a segment in
CCEH, BHT requires a few straightforward changes to the
CCEH’s operations. Any writes to a segment will be first
received into the segment’s buffer, instead of directly into
the in-PMem segment. For a delete or update request, if the
corresponding key is not currently in the buffer, a new record
is inserted into the buffer. In particular, for delete the record
is a special tombstone indicating the key has been deleted.
A read will also first check into the buffer, and then into
the segment if it’s a miss. When the buffer is filled, all the
KV items in the buffer are written to the segment in a batch,
an operation named flip. In particular, during a flip all KV
items in the segment and those in the buffer are read and
merged to form a segment in the DRAM (and occasionally two
segments if collisions cannot be resolved within one segment,
as CCEH does for splitting a segment). A delete or update is
materialized at this moment. The segment is then written to
the PMem as a new segment, rather than overwriting existing
one. This batched out-of-place write enables not only a highly-
efficient sequential write, but also concurrent reads during a
flip operation. BHT sets up a lock for each segment to prevent
writes into a segment and its buffer when they are involved in a
flip. However, reads to the segment and the buffer are allowed
during the flip because both the buffer and the segment are
not being modified.

Note that not every segment is necessarily equipped with a
buffer as we assume a limited DRAM budget for this purpose.
Any accesses to non-buffered segments are carried out in the
same way as CCEH does. As the main purpose of the buffer
is to transform random writes into batched sequential writes,
it has side effects on read requests. On one hand, a read might
find its requested data in the buffer holding recently written
KV items without accessing the slower PMem. On the other
hand, a read miss carries performance penalty, especially when
access locality is weak and the workload shifts to a read-
intensive phase. To address the issue, BHT organizes KV items

3

in the buffer into a hash table for quick search. Each buffer
is associated with a 1-byte counter tracking number of read
misses since the last flip of the buffer. This counter is reset
to zero after a flip. It is incremented by one with each read
miss. When the counter overflows, the buffer is flipped (even
if it is not yet filled). In this way, when the buffer does not
help improve the performance by having enough read hits, it
will be forced to become empty. Each buffer is associated with
a 1-bit flag indicating if it is empty. A read operation into a
segment will first check its corresponding bit and access its
buffer only when it is necessary. That is, if a workload consists
mostly of reads, BHT does not degrade its performance.

Figure 2 illustrates the structure of a buffered CCEH hash
table. In the table, two segments are selected to have write
buffers. Similar to the original CCEH, a key is hashed and
its MSB is used to identify a directory slot, where pointers
to the segment and the buffer are stored. A buffer contains
some metadata about the buffer, including a lock bit for access
concurrency control and a status bit indicating if the buffer
is empty. As each buffer is organized as a hash table, KV
items are placed into these buckets. In the example shown in
the figure, each bucket is 256 bytes long and can hold up to
13 KV slots, each for a 16-byte KV item (a 8-byte key and
a 8-byte value, as assumed in the CCEH design [2]). Each
bucket also has a valid bit map, where each bit indicates if
its corresponding slot contains valid KV item. Furthermore, to
speed up searching keys in a bucket, we generate a 1-byte-tag
array by hashing each key in the bucket into a tag. BHT then
uses an SIMD instruction (“_mm_cmpeq_epi8_mask"), which
is widely available in today’s processors, for a quick search
of the tags in parallel to screen out non-matching keys.

Admittedly, BHT requires additional DRAM space to re-
ceive its performance improvement. Considering the fact that
real-world systems with the PMem are most likely installed
with a certain amount of DRAM [12], BHT makes it possible
to leverage a portion of the DRAM to close the performance
gap between DRAM and PMem and to make PMem more
amenable as an alternative of DRAM. However, the amount
of DRAM space available for this purpose can be limited. To
understand the impact of DRAM usage, assume a segment size
of N bytes, a buffer size of n bytes, and (small) m-byte KV
items. Each buffer flip reduces write amplification (WA) from
256/m to N/n for n KV items. As an example, the segment
size is 16KB, buffer size is 4KB, and 16B KV items, a flip
reduces WA from 16 to 4 for 256 KV items.

B. Avoiding Loss of Data Buffers

To prevent KV items in the DRAM buffers from getting
lost after a system crash, BHT adopts the WAL (write-ahead
log) approach that is widely used in the design of KV stores,
such as LevelDB [13], [14] and RocksDB [15], [16]. In this
approach, any new inserts (including updates) that are sent to
the buffers are also appended at the tail of the in-PMem log.
For a delete request, a special tombstone record is appended
to the log. KV items are appended to the log once they are
written to DRAM. In traditional log-based storage systems,

small writes are first buffered in the DRAM until the resultant
data size matches the underlying storage system’s access
granularity and is then written in an append-only format.
Doing so converts multiple random writes to a sequential write
so as to extract performance from the storage medium, while
avoiding high write amplification. However, to write small data
to a log in the PMem, a DRAM buffer that aligns with the
size of PMem access unit is not required. Random writes to a
log are transformed to sequential writes automatically by the
PMem’s internal write-combining buffer which is of 16KB in
size. Consequently, once an item is written to the DRAM,
the item is immediately written to the log thereby avoiding
a possible scenario of data loss due to a crash before data
reaches the threshold size to be written to PMem.

To confine the size of the log, KV items in the buffer
that have been persisted to the PMem are garbage-collected
in the log. As the buffer in BHT fills up, it is flipped with
all of its KV items written to the PMem. These KV items
are then considered as garbage in the log. To enhance the
efficiency of garbage collection, BHT tracks the oldest non-
garbage KV item for each buffer. Assuming that there is an
insert or delete request sent to the emptied buffer after its flip,
the corresponding log record for the new request becomes this
buffer’s oldest one in the log. To carry out a space reclamation
on the log, BHT only needs to track the oldest record among
all buffers’ oldest ones in the log. Any records before the
record can be all safely removed.

IV. EVALUATION

To understand performance of BHT , we implement it on
a state-of-the-art PMem hash index, CCEH, and evaluate it
on the Intel Optane DC Persistent Memory. We refer to this
CCEH implementation simply as BHT from now on. Our
implementation is based on a newer CCEH implementation
provided by its initial authors [17]. We break down the
performance factors and show their effects on our design.

A. Evaluation Setup

All the experiments are run on a server with the 1st
generation Optane DCPMM that has dual Intel Xeon Gold
6320 2.1GHz CPUs (20-core) with 1.3MiB L1i/L1d cache,
40MiB L2 cache, and 55MiB L3 cache. It is equipped with
188GB DRAM and 6 × 128GB Optane DCPMMs. All the
threads in an experiment are pinned to cores using numactl.
A uniformly distributed write workload of 120 Million KV
items is employed in all of the experiments, where key and
value are of 8 bytes each.

B. Impact of buffer Size

In order to understand the impact of adding in-DRAM
buffers to CCEH, we investigate the performance of BHT
with varying buffer sizes. Every segment of CCEH in the
PMem is equipped with a buffer in the DRAM. A fixed
number of threads (20) is used in this experiment. Figure 3a
depicts the throughput and the total amount of read and write
from the PMem’s media with varying buffer sizes. As each

4

50

100

Pm
em

 IO
 (G

B)

Write IO
Read IO

1KB 2KB 4KB 8KB 16KB
Buffer Size

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

op
s/

s)
BHT Throughput

(a) Varying Buffer Size

50

100

Pm
em

 IO
 (G

B)

Write IO
Read IO

0% 20% 40% 60% 80% 100%
Buffer Ratio

5

10

15

20

Th
ro

ug
hp

ut
 (M

op
s/

s)

BHT Throughput

(b) Buffers to Segments Ratio

Fig. 3: BHT’s throughput and PMem I/O with 20 threads and
varying (a) buffer size (b) ratio of buffer to segment counts

PMem segment’s buffer size increases, writes to the segment
become more sequential (in larger batches), and throughput of
BHT increases. This result is consistent with the observation
shown in Figure 1 where larger bucket sizes correspond to
higher throughput. It is also noted that even though the
workload in the experiment is purely write, we do have both
PMem write and read I/O. This is resultant of BHT design
of managing PMem data in the read-modify-batched-out-of-
place-write manner. An increase in buffer size helps transform
higher number of random writes into batched out-of-place
sequential writes. A reduction in number of in-place read-
modify-write operations is translated into lower amount of
total PMem read and write to the PMem media. The reduction
in the PMem I/O observed when the buffer size is increased
from 8KB to 16KB is little compared to amount of additional
DRAM space allocated. So as to effectively utilize the DRAM,
we fix BHT’s buffer size at 8KB in the following experiments.

C. Impact of Number of Buffers

It is enticing to consider allocating a buffer to every segment
in the PMem for better throughput and overall lower I/O
traffic. However, DRAM is a heavily contested resource by
applications and OS as well. In production systems it may not
be feasible to allocate large amounts of DRAM to the PMem.
To understand BHT’s performance in a DRAM-constrained
system we evaluate the performance of BHT under varying
amount of DRAM. Figure 3b shows the performance of BHT
for different number of buffers (as a proportion of segment
count with the hash table at the time when all of the 120
million of KV items have been inserted.). If each segment is
allocated with a buffer (the 100% ratio), the highest throughput
is achieved. However, it can be seen that even with only
40% of all segments are allocated with buffers, BHT achieves
around 1.6X higher throughput than an index without any
buffers (equivalent to the original CCEH). When we compare
the amount of write I/O to the PMem media at the 0% buffer
ratio and that at the 100% ratio, the WA is reduced by 2.1X.

D. Comparison with State-of-the-arts

To investigate performance advantage of BHT, we compare
it with two state-of-the-art PMem indexes (CCEH [2] and
Dash [9]). Dash is a dynamic PMem hash table design that
incorporates techniques like fingerprinting to achieve high

0 10 20 30 40
of Threads

5

10

15

20

25

Th
ro

ug
hp

ut
 (M

op
s/

s)

BHT CCEH DASH

(a) Write throughput

0 10 20 30 40
of Threads

5

10

15

Pm
em

 B
an

dw
id

th
 (G

B/
s)

CCEH DASH BHT

(b) I/O Bandwidth

Fig. 4: Throughput and PMem write bandwidth.

0us 2us 5us 8us

In
se

rt
La

te
nc

y
Di

st
rib

ut
io

n

Median:
0.59us

BHT

0us 2us 5us 8us

Median:
1.42us

CCEH

0us 2us 5us 8us

Median:
1.74us

DASH

Fig. 5: Insert latency distribution for BHT, CCEH and Dash.

performance. For accurate comparison we use same configu-
rations for BHT and CCEH and we use default configurations
of Dash. BHT is configured to allocate a buffer for each
segment. Figure 4a shows their throughput with different
number of threads. It can be observed write throughput of
BHT outperforms CCEH and Dash by a factor of 2.3X and
2.8X at 40 threads, respectively. BHT’s throughput is higher
than other two indexes even at low thread counts. This is a
consequence of CCEH and Dash’s design to receive updates
onto PMem in an in-place small-write manner, leading to large
number of random writes. BHT on the other hand uses buffers
to batch writes to the PMem avoiding high write-amplification
and writes to the PMem in an out-of-place manner so as to
extract the PMem’s peak sequential write rate. Increase in
random writes at higher thread count has a more pronounced
effect on performance loss for CCEH and Dash.

To reveal insights behind the performance gaps, we measure
the bandwidth, defined as amount of I/O on the PMem media
per second, in the service of write requests on the hash indexes
shown in Figure 4a and show it in Figure 4b. The ratio between
throughput for an index at a certain number of threads and its
corresponding I/O bandwidth indicates the I/O amplification.
As BHT has consistently much higher throughput, it has
much lower I/O bandwidth. Each small write in CCEH or
Dash triggers a read-modify-update of XPLine in the PMem
internally, incurring very high consumption of I/O bandwidth.
BHT batches writes which are aligned with the PMem access
unit to have minimal number of PMem writes for small data,
avoiding expensive bandwidth consumption by the PMem.

Figure 5 shows the write latency of the indexes at a fixed
thread count of 20 threads. By using buffers to first receive
KV items and keeping PMem’s bandwidth low, most of BHT’s
write latency is distributed at lower values compared to that
of CCEH and Dash.

5

V. RELATED WORKS

As in-memory indexing techniques are not originally de-
signed to provide crash consistency, new index structures have
been developed for non-volatile memory while keeping failure-
atomicity in mind. Unfortunately, none of them, in particular
hash table indexes, has considered the block-access property
in Intel Optane DC PMem and exploited the performance
improvement opportunity.

Path Hashing [18] is a hashing scheme designed for PMem
that uses a logical inverted binary tree structure for organizing
and servicing data. A double hashing approach is used for
better space utilization. Path Hashing resolves collisions by
rehashing its original table to a new table that is twice the
size. Level hashing [3] is an advancement of path hashing
where two hash tables are managed, each at a different level
having independent hash functions. Dash [9] is a dynamic
PMem hash table design that incorporates techniques like
fingerprinting and optimistic locking for higher performance.
Data is managed in a fashion similar to cuckoo hashing where
two adjacent buckets are probed. Hash collisions in segments
are managed by placing data in a separate stash buckets.
Once stash buckets overflow a rehash is triggered. In these
index designs, a PMem is treated simply as a byte-addressable
device. And small writes are allowed to directly go to it
for immediate service without any efforts on improving their
spatial locality. This critical issue is addressed in BHT.

VI. CONCLUSION

In this paper, we propose a hash index design, BHT
(Buffered Hash Table), that integrates DRAM to an existing
hash table structure to tackle the issue of the hash index’s
intrinsic small random writes on Intel Optane DC persistent
memory, a device internally with a 256B access unit. Using
DRAM as a staging area to coalesce writes and later merging
them helps convert small random writes to a large sequential
write to the PMem. For high data durability even though writes
are placed in the DRAM, BHT employs a write-ahead log to
ensure the index structure can survive a system crash. We
implement our design into a state-of-the-art index structure,
CCEH, to demonstrate its performance advantage. In the
meantime, this design approach can be applied similarly to
other PMem hash indexes and likely other index structures
such as B+ tree and skip lists. Evaluations show that BHT
outperforms state-of-the-art indexes, including CCEH and
Dash, by a factor of up to 2.3X and 2.8X, respectively.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. This work is supported by the National Science
Foundation under grant CCF-1815303.

REFERENCES

[1] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals
for in-memory databases,” ser. MICRO-46. New York, NY, USA:
Association for Computing Machinery, 2013, p. 468–479. [Online].
Available: https://doi.org/10.1145/2540708.2540748

[2] M. Nam, H. Cha, Y. ri Choi, S. H. Noh, and B. Nam, “Write-
Optimized dynamic hashing for persistent memory,” in 17th USENIX
Conference on File and Storage Technologies (FAST 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 31–44. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/nam

[3] P. Zuo, Y. Hua, and J. Wu, “{Write-Optimized} and {High-
Performance} hashing index scheme for persistent memory,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 461–476.

[4] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
Proc. VLDB Endow., vol. 8, no. 7, pp. 786–797, 2015. [Online].
Available: http://www.vldb.org/pvldb/vol8/p786-chen.pdf

[5] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in Byte-Addressable persistent B+-Tree,” in 16th USENIX
Conference on File and Storage Technologies (FAST 18). Oakland,
CA: USENIX Association, Feb. 2018, pp. 187–200. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/hwang

[6] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable
persistent memory,” in 18th USENIX Conference on File and
Storage Technologies (FAST 20). Santa Clara, CA: USENIX
Association, Feb. 2020, pp. 169–182. [Online]. Available:
https://www.usenix.org/conference/fast20/presentation/yang

[7] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 496–508.

[8] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges and solutions
for fast remote persistent memory access,” in Proceedings of the 11th
ACM Symposium on Cloud Computing, ser. SoCC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 105–119.
[Online]. Available: https://doi.org/10.1145/3419111.3421294

[9] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: Scalable hashing on
persistent memory,” Proc. VLDB Endow., vol. 13, no. 8, pp. 1147–1161,
2020. [Online]. Available: http://www.vldb.org/pvldb/vol13/p1147-
lu.pdf

[10] “xxhash - extremely fast non-cryptographic hash algorithm,”
https://cyan4973.github.io/xxHash/, (Accessed on 02/26/2022).

[11] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong, “Extendible
hashing—a fast access method for dynamic files,” ACM Trans.
Database Syst., vol. 4, no. 3, p. 315–344, sep 1979. [Online]. Available:
https://doi.org/10.1145/320083.320092

[12] H. T. Kassa, J. Akers, M. Ghosh, Z. Cao, V. Gogte, and
R. Dreslinski, “Improving performance of flash based Key-Value
stores using storage class memory as a volatile memory extension,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 821–837. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/kassa

[13] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil,
“The log-structured merge-tree (lsm-tree),” Acta Informatica,
vol. 33, no. 4, pp. 351–385, 1996. [Online]. Available:
https://doi.org/10.1007/s002360050048

[14] S. Ghemawat and J. Dean, “Leveldb,” 2011. [Online]. Available:
https://github.com/google/leveldb

[15] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor,
and M. Strum, “Optimizing space amplification in rocksdb,” in
8th Biennial Conference on Innovative Data Systems Research,
CIDR 2017, Chaminade, CA, USA, January 8-11, 2017,
Online Proceedings. www.cidrdb.org, 2017. [Online]. Available:
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf

[16] F. R. Team, “A persistent key-value store for fast storage environments,”
2021. [Online]. Available: http://rocksdb.org

[17] M. Nam and H. Cha, “CCEH,” https://github.com/DICL/CCEH, 2020.
[18] P. Zuo and Y. Hua, “A write-friendly and cache-optimized hashing

scheme for non-volatile memory systems,” IEEE Trans. Parallel
Distributed Syst., vol. 29, no. 5, pp. 985–998, 2018. [Online].
Available: https://doi.org/10.1109/TPDS.2017.2782251

6

