
IndeXY: A Framework for Constructing Indexes
Larger than Memory

Chen Zhong∗‡, Qingqing Zhou† ∥, Yuxing Chen† §, Xingsheng Zhao ∗ ‡, Kuang He† ‡‡, Anqun Pan† §, Song Jiang∗ ¶
∗ University of Texas at Arlington, US

† Tencent Inc., China
§ {axingguchen,aaronpan}@tencent.com

∥ sendtoqq@gmail.com ‡‡ korenhe@outlook.com
‡ {chen.zhong,xingsheng.zhao}@mavs.uta.edu ¶ song.jiang@uta.edu

Abstract—Indexes in a database system can consume a large
amount of memory. When they grow too large to be entirely
held in the memory, selected portions of the indexes have to
be unloaded to the secondary storage. There are a number of
challenges in the design of an extensible index spanning memory
and disk. First, the designs of in-memory portion and on-disk
portion of the index must be decoupled so that the best choice
for each device can be independently made. Second, selective
unloading of in-memory portion to the disk must be carefully
designed to maximize chance of memory access and to produce
the most disk-friendly I/O access. Third, the strategy for index
reloading from the disk and retaining in the memory must be
optimized for the highest memory efficiency.

In this paper, we proposed a memory-disk-spanning index
design, named IndeXY, to effectively address the challenges.
IndeXY distinguishes itself by being a framework that allows
separate adoption of an in-memory index design and an on-
disk data organization and access scheme that are deemed
most efficient to its workloads. Instead of being just another
one-size-fit-all index across memory and disk, the framework
provides well-designed mechanisms and policies to integrate a
selected in-memory index (Index X) and an on-disk index (Index
Y) into one extensible index (IndeXY). We have implemented
IndeXY with alternative in-memory indexes (ART tree or B+
tree) and alternative disk indexes (LSM tree or B+ tree). As an
anecdotal example, experiments show that integrating the ART
tree and an LSM tree in the framework can lead to a throughput
improvement by as high as an 8.6X on a TPC-C workload over
LeanStore that uses B+-tree indexes in the memory and disk,
and can improve performance for almost all YCSB workloads.

Index Terms—index, larger than memory, B-Tree

I. INTRODUCTION

In a database system, indexes are one of the most
performance-critical components for fast and high-throughput
data access. For online transaction processing (OLTP) work-
loads, the performance of the indexes is especially important.
To this end, there has been a large amount of effort on
the design of high-performance indexes. One major effort
is to keep all indexes in the memory, including in-memory
databases supporting OLTP, such as H-Store [1], in-memory
OLTP SQL server database engine [2], and MonetDB [3].
While there have been many well-studied in-memory indexes,
these databases can choose their indexes best suited to their
target workloads for fast in-memory data access. However,

the memory demand from the indexes can be too high. For
example, about 55% of the memory is occupied by the indexes
in H-Store, a state-of-the-art in-memory database, when it runs
TPC-C workloads [1]. One reason for the high demand is that
tuples are relatively small, and a table often requires multiple
indexes.

The limited memory is competed for additionally by various
other types of data. Once the available memory reduces to a
threshold, the operating system (OS) starts to swap pages it
deems less likely to be used soon out of the memory [4].
However, the OS does not have the insider knowledge of the
index usage, and it carries out the replacement at the unit of
pages. While access locality exists in the key space and ac-
cordingly on the index structure, the memory page often is not
an appropriate vehicle to identify and group hot (or cold) data
for migration between memory and disk (e.g., a page mixed
with hot and cold keys). Instead, components in an index,
such as leaf nodes or subtrees, are better candidate structures
on which hot/cold keys can be consistently identified.

Therefore, indexes need to span memory and disk. This
may happen temporally for in-memory databases during peak
load periods when the memory cannot hold them entirely, and
part of the indexes has to be spilled into the disk. It may
happen constantly for conventional databases to cache their
indexes in the buffer cache. While the OS is not effective in
maintaining an index data structure across memory and disk
for performance and semantic reasons [5], the database system
takes the control of the management into its own hands at the
user space. When indexes can be both in the memory and on
the disk and may be constantly migrated between them, the
database system must organize them in both places. Unlikely
tuples in a table that are stored contiguously and can be easily
reached via indexes, indexes are highly structured. There are
several requirements on their effective storage and access.

First, they need to be organized in a highly accessible
structure. As a counterexample, their storage on the disk as
a log file is not acceptable as it doesn’t support direct access.
This implies that index nodes in both places should be indexed
in more sophisticated data structures, such as tree variants.
Second, nodes can be efficiently assembled and disassembled

1



to move between indexes in the two places. The efficiency
is often compromised by their access pattern and storage
granularity. While nodes can be flexibly organized in the byte-
addressable memory, they have to be assembled into the blocks
(e.g., 4KB) before being unloaded to the disk. When frequently
accessed (a.k.a. hot) nodes are not contiguously placed on
the in-memory index, they may be assembled into different
blocks, resulting in a loss of efficiency. A similar issue arises
when nodes are loaded into the in-memory index from the
disk. Therefore, to achieve higher performance and better com-
patibility, the current practice is that an index’s memory and
disk structures must be co-designed. Third, there exist many
highly performant legacy indexes designed either only for the
memory or for the disk. New and more efficient indexes for
data in the memory and on the disk keep emerging. Because
memory and disks have very distinct access characteristics, it
is unlikely to have one index design that fits both devices. An
ideal design is to adopt the best indexes for memory and disk
that respectively suit the devices and their workloads.

The current practices in response to these requirements
are far from satisfactory. Being aware of disadvantages of
using virtual memory for data migration and on-disk data
management, database designers have resorted to the co-design
approach, which is to develop customized disk or memory
structures by themselves. For in-memory databases, the effort
is on the migration of a selected subset of data out of the mem-
ory, either to a remote memory cache, such as Memcached [6],
or to local disks. For the latter option, example systems are
Siberia [7] and Anti-Caching [8]. However, they are highly
customized to specific in-memory database systems (Microsoft
Hekaton and H-Store, respectively). They developed their on-
disk data management and access schemes for tuples spilled
from the memory. While the indexes may consume half or
even more of the memory space, it is necessary to study
how to construct extensible indexes that inherently support
memory extensions. For more traditional disk-based databases,
the home location of their indexes is the disk. The optimization
effort is on the management of the buffer cache where portions
of the indexes are cached. Using the B+-tree indexed database,
LeanStore [9], as an example, one of its major goals is to
make the cached portion of the on-disk index be organized
more efficiently by using the pointer swizzling technique. The
efficiency issue arises as LeanStore maintains a single index
and node structure across the two devices. Similar to the
design of virtual memory, LeanStore’s index co-design that
keeps one index structure into two devices of vastly different
characteristics can seriously leave out important performance
optimization opportunities. This issue is especially critical
in the resolution of the conflict between the demand for
fine granularity on hot data detection and migration and the
requirement of block-size data storage and access on the disk.

The goal of this paper is to provide a framework, named
IndeXY, supporting development of extensible indexes across
the memory and disk. It can effectively address the aforemen-
tioned issues. First, it allows a selected existing in-memory
index (Index X) and a selected existing on-disk index (Index

Y) to be integrated into one index structure. IndeXY can
reap the benefits of each of its component indexes that have
been designed for its target device and selected for the target
workloads. Second, it provides a highly efficient hotness
monitoring functionality in the key space in an adaptable
granularity. Third, it automates unloading/loading index nodes
to/from the disk in response to memory availability.

In summary, we make multiple contributions in the paper.

• Recognizing the lack of a virtual-memory-like framework
for managing key-value data in databases (rather than
memory pages), we propose a new framework, named
IndeXY, to enable a consistent key space across the mem-
ory and disk with an index ‘swappable’ out to (in from)
the disk. The framework facilitates quick construction of
an extensible large index with high performance.

• We design a set of techniques for efficiently monitoring
and recognizing segments of the key space with a con-
sistent access locality and accordingly unloading selected
segments when memory space limit is reached.

• We evaluate IndeXY with representative in-memory and
on-disk indexes and compare its performance with de-
signs that limit themselves to one index structure. After
reaching the memory limit, experiment results demon-
strate that IndeXY systems employing ART-LSM and
ART-B+ outperform B+-B+ systems by up to a 30X
increase of throughput in various micro-benchmarks and
YCSB and TCP-C benchmarks.

II. THE DESIGN OF INDEXY

There are several objectives in the design of the IndeXY
framework. First, it can accommodate existing indexes that
were designed exclusively for memory or disk. Second, it
can add hotness monitoring capability to the in-memory index
with minimal efforts. Third, detection of hot regions should
consider spatial locality in addition to temporal locality. The
spatial locality is defined on the continuous key space. For
the purpose of unloading index nodes to the disk, IndeXY
should identify cold key regions, each as long as possible,
for high I/O efficiency. Fourth, the time overhead (e.g., that
for monitoring access patterns) and space overhead (e.g.,
additional memory space for recording access history) must be
small. In the design, we assume order-preserving indexes. For
example, hash table is not supported in the framework because
major database indexes require support range search. And only
when keys in the disk are sorted can they be indexed in a
course-grained (e.g., blocks) manner for memory efficiency.
Therefore, we describe our design on tree-like index structures.

A. The Architecture of IndeXY

Extensible index IndeXY is a framework integrating two
independent indexes, namely in-memory Index X and on-disk
Index Y. While it makes an in-memory index extensible to
the disk and an on-disk index extensible into the memory,
it fully decouples designs of the two indexes. They don’t

2



Dirty node

Frequently accessed

Infrequently accessed

Clean node

Mount point

Write Buffer Read Cache Transfer layerDRAM

DISK

Pre-cleaningSubtree release

Clean

… …

Write Buffer Read Cache

Fig. 1: The Architecture of IndeXY where its major components are illustrated. As illustrated, the subtree release and pre-
cleaning operations on an index (the left graph) lead to space reclamation and a cleaned sub-tree, respectively (the right graph).

have to be of the same or similar structures for efficient data
migration. Instead, their designs can focus on characteristics of
their respective hosting devices. The framework is responsible
for selecting and organizing keys for the migration with
high efficiency. As shown in Figure 1, there is a transfer
buffer layer in the memory that sits between the two indexes
in the framework. The buffer is sized only to temporarily
accommodate data ready for being immediately written to the
disk or read from the disk. The role of actual write buffer and
read cache is played by the Index X structure.

The framework’s major functionalities are integrated into
the in-memory Index X, including a module for proactively
writing dirty keys to on-disk Index Y (the pre-cleaning mod-
ule), a module for selecting and releasing index components
(the subtree release module), and the module for moving keys
between the two indexes (the data migration module). These
modules’ operations are coordinated, and carried out based on
the distribution of accesses across the index and in response
to current memory pressure. Unlike the virtual memory, which
is a system-level memory-extension support, IndeXY is a
framework to facilitate transforming user-provided indexes
into highly efficient extensible indexes with ease. In the
process, IndeXY aims to minimize changes to the existing
indexes and make them least disruptive.

A memory size limit is set for the index managed in the
framework, which monitors the index size that approaches the
limit. There are two thresholds associated with the index size
to control its memory usage. When the size reaches a threshold
and becomes (very) close to the limit (the high watermark), the
framework starts identifying the cold sub-trees for unloading
to reduce its size to a lower threshold (the low watermark). The
framework uses the two watermarks to minimize the memory
size oscillation due to frequently triggering of index unloading.

B. Index Pre-cleaning

When the high watermark is reached, the index unloading
is triggered to keep the in-memory index size from further
growing and to reduce it under the low watermark. During
the unloading, part of the index must be locked to prevent
contention between the unloading and user-access operations.
The locking for a long time period could seriously compromise

the index performance. In the meantime, other part of the
index can continue receiving inserts and keep growing the
index. Therefore, it is important for this unloading process
to be completed as quickly as possible so that the lock can be
released quickly and the index size can be quickly reduced.
However, this can be a challenging task. The index grows
because of continuously inserted new keys. It leads to dirty
data in the index and accordingly a slowdown of the unloading
process due to writing of the dirty data to the disk.

The answer to this challenge in the framework is the
periodic index pre-cleaning operation. It identifies dirty data
in the index and then writes them back to the disk before an
unloading with the hope that future unloading operation could
simply discard (almost)-all-clean sub-trees. Compared to the
unloading process involving the disk writes, unloading of pre-
cleaned sub-trees is instantaneous. To achieve high efficiency
for the pre-cleaning operation, the framework needs to avoid
the key region receiving intensive inserts in its search for dirty
data for two reasons. First, it is likely (some of) the inserts
are overwrites of existing KV pairs in the region. Skipping
the region for pre-cleaning reduces unnecessary writes to the
disk. Second, we assume that an insert workload often has its
spatial locality, leading to intensive updates in one key region
in the index at a time (before it moves to another region). It is
important to retain this locality in the write-back workload. As
Index X is an order-preserving structure, Index Y is a sorted
index. Writing keys in a limited range sequentially to the Index
Y on the disk helps with the Index-Y’s efficiency.

The pre-cleaning operation is carried out on the Index X,
which is an ordered search tree. In the tree structure, each
internal node represents a partition of the key space with its
children covering its sub-partitions. The leaf nodes store tuples
or pointers to tuples (if tuples are large) in the database. The
framework adds a dirty bit to each internal node indicating
if there are any inserts in the sub-tree rooted at the node. It
also associates a dirty bit with each key in the leaf node. The
framework relies on these bits in its search for dirty keys. The
pre-cleaning operation is carried out on a key region covered
by a sub-tree rooted at an inner node. Each of the key regions
should be sufficiently large to accommodate a batch of dirty
keys. The framework reasonably assumes that the index is a

3



D: 0
C: 0

Insert

Under Intensive Inserts
The workload thread operation The pre-cleaning thread operation

Check-back
(Insert detected)

Check-backCheck-back
(Cleaning target found)

D: 1
C: 0

D: 0
C: 1

D: 1
C: 1

Insert

Fig. 2: Two-bit-based selection of a subtree for cleaning. The
two bits (”DC”) are associated with the subtree’s root node.
The pre-cleaning thread detects a subtree under intensive insert
workload and avoids it until a ”check-back” operation finds no
more inserts at the node after the last scan.

balanced tree. Therefore, the inner nodes at the same level
partition the entire key space into regions of about equal size.
The choice of the level can be adjusted so that the key region
covered by each of the inner nodes is sufficiently large to
accumulate dirty keys for batching writes.

In the framework, the inner nodes are connected into a
linked list. A pre-cleaning thread periodically scans the list
to identify a node (the key region under the node) in which
it searches for dirty keys. The thread’s pre-cleaning operation
is triggered by the insert requests. To this end, the framework
maintains a counter that tracks number of inserted keys on
the index. The counter is incremented upon a key insertion.
To minimize the serialization in updating of the counter
by multiple insert threads, the framework lets each of the
threads keep the record of its own inserts locally without lock
contention before updating the global counter (with a lock)
in a much lower frequency. This optimization is acceptable
as the delayed updating has little impact on the pre-cleaning
thread. This counter enables a timer with a preset count of
insert keys. When the timer expires, the framework activates
the pre-cleaning thread to scan the list for a qualified inner
node for cleaning. The timer is then reset. Note that this scan
will be conducted on the list by only one pass. The next pass
will start when the timer expires again.

Using the timer helps to control the pace of the cleaning
operation, so that there are sufficient dirty keys for writing
back. In the meantime, we propose a check-back approach to
exploit the spatial locality in the insert workload. In each of
the inner nodes on the list, in addition to the dirty bit (named
D bit), there is a bit (named C bit) indicating if this node
is a candidate for cleaning. Initially, both of the bits are 0.
When the thread walks over the list and stops at a node, it
checks if its D bit is 1 (dirty). If yes and its C bit is 0 (not
yet a cleaning candidate), it clears its D bit and sets the C bit
to 1, and continues its search for a node for cleaning. When
it encounters a node whose DC bits are ’11’, it will simply
reset its D bit back to 0 without selecting it for cleaning.
When the D bit that was reset in the last pass of scan was
set back to 1 by more key insertions, the framework considers
the key region under the node is experiencing intensive insert
workload. Accordingly, the scan skips this node in this pass

and waits for it to be out of the intensive insert phase. When
the thread sees a node with its DC bits of ’01’, the node
does not receive any more insertions after the last pass (a
check-back). This node is then selected for cleaning. And the
thread suspends its scan on the list when this node’s cleaning
is completed to retain the spatial locality of the write-back
operation. This check-back approach is depicted in Figure 2.

When a node is being pre-cleaned, it is locked so that
access to the sub-tree rooted at the node is not accessible until
the operation is completed. When the inner node list changes
(removal or addition of nodes), the list will be re-constructed.
Because the list is on a level not far away from the root, the
list reconstruction occurs infrequently.

C. Selection of Subtrees for Release

When the size of the in-memory Index X approaches its
limit, a memory release thread is activated to select subtrees
for removal from the index so that its size is smaller than
the low-watermark value. While the pre-cleaning thread has
exploited the write locality, the release thread exploits the read
locality to identify the least likely accessed subtrees in the
index for release. In the meantime, it also needs to consider
the subtree size in the selection. A frequently accessed subtree
could be a good candidate for release if its size is large,
because its release can free a large memory space and quickly
bring the index size below the low watermark.

There are three challenges in the design of an effective
subtree selection policy. First, there are two factors (namely,
subtree access frequency and space size) that must be con-
sidered in an integrated manner. A consistent criterion is
required. Second, subtrees in an index tree are not necessarily
exclusive. A subtree can be part of a larger subtree and covers
multiple smaller subtrees. They may not be independent of
each other. Thus they cannot be simply compared against each
other in the selection process. Third, to free a given amount
of memory, we prefer a smaller number of larger subtrees
to many small subtrees. Note that a released subtree is still
logically connected to the Index X. It is physically moved to
the Index Y as an extension of the Index X. On the Index
X there are mount points where the released subtrees are
logically connected. It is desired to minimize the number of the
mount points because a search of a key that reaches a mount
point needs to continue into Index Y (if it is not yet known if
the key is in Index Y). This would compromise performance
of workloads with many accesses to non-existent keys.

To address the challenges, we propose the concept of access
density and a density-based node ranking algorithm. Any
access of keys in the leaf nodes is preceded with a search
on the index starting from the root. A search leaves a path
from the root to a leaf node. The access density of a subtree
rooted at an inner node is the ratio between the number of
searches that have crossed the node and the number of keys in
the subtree (on the Index X). This density takes both the loss
(miss penalty) and benefit (space reclamation) into account.
Multiple accesses can be collected along a search path (at
different inner nodes). And the size of a subtree rooted at

4



an inner node can be estimated by counting key insertions
passing through the node. The major concern on the counting
method is the overhead of updating the two counters in an
inner node (an access counter and an insertion counter). The
framework uses two approaches to minimize the overhead.
First, it consistently applies sampling to reduce the update
frequency (e.g., one updating every 100 accesses at any inner
node). Second, the framework has managed not to select small
subtrees for release. To this end, it chooses a threshold tree
level such that only inner nodes on or above it have their
two counters updated. So that their corresponding subtrees
are sufficiently large. The minimal granularity of index space
reclamation (or the smallest subtree for release) determines the
level choice. The framework decides this granularity based on
the amount of memory space it normally needs to release,
which can be estimated by the index memory limit and the
watermarks. The framework initially only monitors the index
memory size by tracking effective inserts and space release.
When the index memory size reaches the low watermark for
the first time and the index size approaches its limit, the
framework determines its threshold level and starts to collect
the statistics for selected inner nodes. The access counters will
be reset after a node release.

When the framework wakes up the release thread for space
reclamation, the thread first runs a density-based node ranking
algorithm to select inner nodes of low access density. The
ranking algorithm ranks candidate nodes in the order of their
increasing density in a list with a target size of memory for
release. Initially, only the index’s root node is in the list. In
each iteration, one of the node(s) in the list is chosen and
replaced by its child nodes. Specifically, it scans the list from
the head (with the smallest density). At each node, it tracks (1)
the total size of the nodes (each for a sub-tree) it has scanned,
including this node. (2) the densities of its child nodes. If the
total size is smaller than the target size, the scan continues to
the next node. If it reaches the target size (or larger than it
with a small margin), all the nodes from the head to this one
are selected for release, and the algorithm is done. Otherwise,
if it is larger than the target size by more than the margin, the
list is updated by a split-and-replace operation. The algorithm
then starts over on the updated list. In a split-and-replace
operation on a node, the node is removed from the list, and its
child nodes are inserted into the list at positions determined
by their respective densities. The split-and-replace node is
selected in the following way. The nodes are ordered into
another list according to their sizes. Starting from the largest
node, we evaluate variation of its child nodes’ densities. If
the variation (measured as the gap between the lowest density
and the highest density) is more than a threshold (20% of the
parent node’s density by default), it is selected as the split-
and-replace node. Otherwise, the next largest node on the list
is evaluated. The process continues until such a node is found
or the end of the list is reached. In the latter case, the largest
node is simply selected. The pseudocode is at Algorithm 1.
This algorithm effectively minimizes both number of misses
and number of released subtrees. The selected inner nodes for

Algorithm 1: Selection of Subtrees for Release
1 Function SpaceReclamation(target size):

// select inner nodes of low access density.
2 list1 = [root]// Ordered by density
3 while True do
4 pos = 0
5 total size = 0
6 while pos < list1.length do
7 cur size = total size + list1[pos].size
8 if cur size < target size then
9 total size += list1[pos].size

10 else if cur size <= target size + margin then
11 release all nodes from the head to current node
12 return
13 else
14 list1 = SplitAndReplace(list1)
15 break
16 pos++
17 Function SplitAndReplace(list1):
18 list2 = sort(list1)// Ordered by node size
19 sp node = largest node in list2// split-and-replace node
20 for each node in list2 do
21 variation = VariationOfDensities(node.children)
22 if variation > threshold then
23 sp node = node
24 break
25 replace sp node in list1 with its child nodes and maintain the order

according to the density
26 return list1
27

release are locked. Because of pre-cleaning the nodes are more
likely to be clean and can be quickly released.

D. Moving Data between Indexes X and Y

After Index X reaches its size limit, data movement between
Index X in the memory and Index Y on the disk takes place,
including writing-back dirty data to the disk and loading keys
from the disk to the memory in response to misses in the Index
X. As a common practice in the design of an on-disk index,
a write buffer and a read cache are set up in the memory to
improve the disk access efficiency. Often the more the memory
allocation to the buffer/cache is, the more effective they are.
However, large buffer/cache can consume a significant amount
of memory. Another issue is that it is not clear how large
(relative to the Index X size) they should be set to maximize
the memory efficiency, because keys in the index and the
buffer/cache are separated into two data structures and their
access locality cannot be consistently evaluated.

The framework addresses the issue by considering tem-
poral locality and spatial locality separately. Exploitation of
temporal locality often requires a large cache space, as a
re-access of a key is likely preceded by accessing many
other keys. This is why increasing cache/buffer helps reduce
the miss ratio. The framework uses the Index X itself as
the buffer/cache. Regarding the write buffer, the pre-cleaning
operation attempts to avoid cleaning the subtrees that are being
intensively written. Repeated updates on a key can be absorbed
in the write buffer. Regarding the read cache, the framework
inserts keys loaded from Index Y directly to the Index X. Note
that these inserted keys are marked as clean ones in the index
as their copies are not removed in the Index Y. Integrating
Index X and the read cache makes the locality consistently
compared, and the temporal locality be better exploited.

5



The spatial locality is also critical to the performance of
accessing block devices. The framework keeps the write buffer
and read cache designed with Index Y to exploit the locality.
However, their sizes are configured to the minimal (e.g., a
few Megabytes). For the write buffer, its main purpose is to
receive and aggregate the dirty keys from the Index X to form
sequences of disk writes. For the read cache, its main purpose
is to keep recently loaded blocks from the disk. When a key
search misses in the Index X, the key along with the other
keys stored in the same block is read from the disk. Instead of
also inserting these other keys immediately into the Index X,
the framework leaves them in the read cache. For workloads
with strong spatial locality, such as sequential read, the design
effectively exploits the spatial locality without taking the risk
of polluting Index X with non-accessed keys.

III. PERFORMANCE EVALUATION

In this section, we experimentally evaluate the benefits
brought by the framework. In the experiments, we choose
two alternatives for Index X. One is B+ tree. And the other
is the ART index [10], an adaptive radix tree that has been
well recognized and used for efficient indexing in the main
memory [11]–[14]. We also choose two alternatives for Index
Y. One is the B+ tree for the disk, and the other is LSM
tree [15]. The LSM tree is designed to optimize the insert
operations on the block device by always sequentially writing
a large file containing sorted key-value pairs.

A. Experiment Setup

Because B+ tree is an index that has been well studied and
used across the memory and disk, we use it to represent an
index design that couples its memory and disk components in
the same structure. In particular, we choose LeanStore [9] and
its opened source code (git:#d3d83143) [16], a high-
performance database, in the evaluation to reveal potential
limitations of the one-index-for-two-devices design. LeanStore
has extensively optimized its in-memory B+-tree component
as well as its B+-tree-indexed database on the disk. It adopts
pointer swizzling and a low-overhead replacement technique
to improve the memory access efficiency and memory hit ratio.
The ART index has been shown to consistently perform better
than B+ tree. Designed as a memory-only index, it doesn’t
come with a disk component. We integrate the index into the
IndeXY framework by adding the framework’s capabilities,
such as pre-cleaning and subtree release, to its opened source
code [17]. For this Index X, we choose either B+ tree or
LSM tree as its paired Index Y. For the B+-tree Index Y,
we use LeanStore with its on-disk key-value pairs organized
in a B+-tree index. We minimize its buffer pool (512 MB) to
serve as the write buffer and read cache of the framework for
exploiting spatial locality. For the LSM-tree Index Y, we use
RocksDB (git:#v8.1.1) [18]. Its in-memory MemTable
becomes the framework’s write buffer (256MB). We minimize
its read cache (256 MB) for recently read blocks. The three
systems are named B+-B+, ART-B+, ART-LSM, respectively.
Note that B+-B+ is just the LeanStore itself. As RocksDB also

Systems Index X Index Y
B+-B+ B+ Index B+ Index
ART-B+ ART Index B+ Index
ART-LSM ART Index LSM-tree Index
RocksDB RocksDB Buffer LSM-tree Index

TABLE I: The four systems in comparison

(a) Random Inserts (b) Memory Size (Random)

(c) Sequential Inserts (d) Memory Size (Sequential)

Fig. 3: Throughput and memory sizes of the index systems
under the workload of random or sequential key inserts.

has its indexes for in-memory buffer and on-disk data orga-
nization, we include it in the evaluation. Table I summarizes
their compositions.

In the evaluation, we first uses a set of micro-benchmarks
to extensively examine the performance improvements that
can be enabled by the framework. We then use the YCSB
benchmark suit and the TPC-C benchmark to quantitatively
evaluate the difference the framework can make on the widely
used benchmarks. The experiments were conducted on a server
equipped with two 24-core Intel Xeon Platinum 8255C CPU
processors, with two NUMA nodes, each with 128 GB DRAM.
We installed one 512 GB SAMSUNG MZ7LH480 SSD. Since
our focus is not on the NUMA effect, to avoid remote memory
access, all worker threads are pinned to NUMA node 0 by
using numactl. In the evaluation of the YCSB and micro-
benchmarks, we set the index size limit at 5GB and use four
threads to serve queries, while setting the overall memory limit
to 30GB when evaluating the TPC-C benchmark.

B. Write Performance

To observe how the systems’ performance responds to
intensive write, we generate inserts of distinct 8-byte keys
(along with their respective 8-byte values). The keys are
uniformly distributed, and are inserted either in a random order
or in a sequential order. We insert 800 million keys with a total
size of around 12GB. The systems’ page/block size is 4KB.

6



Figures 3(a) and (c) show the throughput with the insertion
of keys. There are several interesting observations. First, the
Index X should be selected solely based on its in-memory
performance. When Index X can be all held in the memory,
the systems using the ART index as Index X (ART-B+
and ART-LSM) perform much better than B+-B+ (by 2.2X-
3.1X). However, for a design that demands the same data
structure in the two places (memory and disk) such as B+-
B+, it lacks the flexibility to adopt a newly proposed high-
performance in-memory index. Second, when more and more
keys are inserted, the memory runs out, and the throughput
drops dramatically. In comparison, ART-B+ and ART-LSM
can hold more keys than B+-B+ before their memory limit is
reached. This is because the ART index has a more compact
structure and more efficient use of memory. One can easily
take advantage of it by selecting the index as Index X in the
framework. Third, the two different insert patterns also impact
the systems’ performance behaviors. Random inserts cause a
throughput drop even before the memory limit is reached as
inserts become more expensive with a larger Index X. The
throughput is less sensitive to the size of the Index X with
sequential inserts. The impact is more pronounced on Index
Y’s performance. When Index Y is an LSM tree and keys are
randomly inserted, the throughput of ART-LSM is over 30X
higher than that of systems choosing B+ tree as their Index Y
(after the memory limit is reached). This is because LSM tree
is designed to accommodate random writes with its log-style
writes. In contrast, using B+ index as Index Y causes constant
node split/merge, leading to significantly more disk access.
Furthermore, if we look into the enlarged part in Figure 3(a),
ART-B+ has a higher throughput than B+-B+ when Index Y
is intensively involved in receiving keys. This is because with
ART as its Index X, the framework manages to use the pre-
cleaning operation to produce batched write-backs of keys in
one subtree at a time. These more localized writes are more
friendly to the B+-tree Index Y.

Without an Index X supported by the framework, RocksDB
uses its fixed-size MemTable as the write buffer and provides
a consistent write throughput. Because MemTable is much
smaller than the available memory, its throughput is much
lower initially. When the memory is used up, with the random
inserts RocksDB has a higher throughput than the indexes
using B+ as its Index Y. This is expected as RocksDB is
designed to optimize random writes.

Figures 3(b) and (d) show the memory consumption of the
systems. The B+-B+ system (LeanStore) allocates the memory
according to its limit size at the beginning and keeps its in-
memory index within the limit. The memory sizes of ART-
LSM and ART-B+ are regulated by the framework. We can
see that their memory size is well maintained at the limit and
is very stable after the limit is reached. This suggests that the
framework can responsively release memory once the limit
is exceeded. Its pre-cleaning operations make clean subtrees
more available, enabling quick releases.

While ART-B+ and B+-B+ organize and access their keys
in pages, we vary the page size to understand its impact on

Page Size 4KB 8KB 16KB
B+-B+ 44.68 KOPS 33.18 KOPS 27.21 KOPS
ART-B+ 313.89 KOPS 458.1 KOPS 583.96 KOPS

TABLE II: Random write throughput with different page sizes

Fig. 4: Throughput with different value sizes

Fig. 5: Read throughput with
different working set sizes

Fig. 6: Read throughput with
various Zipfian distributions

the performance. Table II shows the throughput of the entire
workload (inserting 800 million keys) of ART-B+ and B+-B+.
With a larger page size, the throughput of B+-B+ becomes
lower as the cost of node split and merge increases. In contrast,
ART-B+’s effort on producing more and longer sequential
writes is better translated into performance advantage with a
large page size. This echos the throughput difference between
sequential and random inserts shown in Figures 3(a) and (c).

To understand the impact of insert size on the performance,
we increase the value size from the default value of 8B in
the random insert workload. To better reveal the performance
difference, we use the amount of KV data per second, rather
than MOPS, as the metric to show the results in Figure 4. Un-
derstandably, with large KV sizes each leaf node stores fewer
KV pairs. Fewer nodes are involved in a node split/merge,
leading to lower read and write amplification. Accordingly,
B+-B+ receives the largest performance increase. ART-LSM
also increases its throughput but at a much smaller scale. While
the framework can make the writes to the disk more sequential,
using larger KV pair sizes further improves the sequential-
ity, which helps with the I/O efficiency and makes LSM-
tree’s internal compaction operation more efficient. RocksDB’s
behavior is similar to that of ART-LSM, as they both use
RocksDB to process write requests to the disk.

C. Read Performance

For the read performance, we experiment with a key read
workload that has a well-defined working set. Keys in the

7



working set are accessed repeatedly and uniformly in a random
order. The keys are uniformly distributed in a key space
containing 320 million KV pairs. In LeanStore they occupy
about 16GB disk space in a B+ tree. In the experiment, we
first use the read workload to warm up the memory (loading
KV pairs into the Index X) before we start to collect the
measurement data. Figure 5 shows the throughput of the four
systems with different working sets (in terms of the number
of distinct keys accessed). The system with ART tree as their
Index X receives much higher throughput than B+-B+. There
are two reasons. First, when the working set is very small (less
than around 1.1 million keys), the 5GB memory is sufficient to
keep the working set of any of the systems. Because the ART
tree is an index with a higher performance than B+ tree, the
throughput of ART-LSM and ART-B+ is about 7X of that of
B+-B+. Second, when the working set becomes larger, only
ART-LSM and ART-B+ can keep it in the memory. While
B+-B+ also has 5GB memory, it stores its in-memory keys
in the cached B+ pages that are generated as leaf nodes of
the on-disk B+ tree. When keys are accessed sparsely within
a page, to keep one or a few hot keys in a page in its Index
X, B+-B+ has to keep the entire page in the memory. Due to
the coupled index design, B+-B+ leaves the memory seriously
underutilized. If Index X is an index designed for memory
(e.g., the ART tree), this embarrassing situation is avoided. The
throughput of ART-LSM and ART-B+ has a drop at around
of 25 million keys in Figure 5 because the tree grows into
another new level. The throughput of RocksDB is also much
lower than that of ART-LSM and ART-B+, but is higher than
that of B+-B+ with a smaller working set, as we enable its
Row Cache with a smaller caching granularity than the block.

If Index X is considered as an in-memory extension of
Index Y, the effectiveness of the in-memory Index X relies
on the locality strength of accesses on Index Y. To reveal
its impact, we create a read workload with skewed access
on keys in the 320-million-key Index Y. The access has a
Zipfian distribution. We vary its skewness parameter (S) in
the distribution. The larger the S is, the more the skewness.
Figure 6 shows the throughput with different S (from 0.5 to
0.99). With a smaller skewness, there are more hot keys spread
out into many hot pages. The 5GB memory in any of the
systems is too small to hold the hot keys. When S increases
beyond 0.7, by caching the hot keys in the ART tree ART-
LSM and ART-B+ become increasingly capable of capturing
the working set in the memory. In contrast, B+-B+ caches hot
pages, rather than hot keys. The 5GB memory is not large
enough to keep the hot pages even with an S of 0.99, because
of its use of page granularity for memory allocation. The
framework enabling the decoupled index design frees Index
X from the constraint.

D. Workload with Shifting Working Set

While the IndeXY framework supports an extensible index
across the memory and disk, its Index X must selectively store
KV pairs that are in the current working set. Furthermore, this
selection must be updated in response to working set change

Fig. 7: Lookup performance with shifting workload (4 threads,
5 GB dataset, 5 GB buffer pool, skew 0.7)

so that the memory is always well utilized. The framework
has its subtree release and data migration modules for this
purpose. To evaluate its efficacy, we design a read workload
with its working set shifting over the key space. Specifically,
the read workload has a Zipfian distribution with a skewness
factor S of 0.7 over a key space of 320 million KV pairs in
Index Y. The workload has four phases, each with 640 million
KV reads. After a phase, we rotate the key space by 1/4 of the
space to serve the read requests. For example, a read of the
key at the 1/4 of the key space in the last phase reaches the
key at the beginning of the key space in this phase. Therefore,
the working set keeps shifting across the key space.

Figure 7 shows the throughput of ART-B+ and B+-B+ with
the workload. In the experiment, we pre-warm the memory
before we start to collect throughput data. In addition, to
observe the impact of spatial access locality, we change the
access unit from 1 key to 5 then 10 continuous keys in one
read. As shown in the figure, with the access unit of one key
ART-B+ experiences a brief throughput drop at the time of
entering a phase. It then quickly adapts its Index X to the
new working set and recovers its throughput. When the access
unit increases, there are two major differences. One is that the
throughput is significantly increased (by 4.3X and 7.2X for
the unit of 5 and 10 keys, respectively). This indicates that
the framework’s write buffer effectively exploits the spatial
locality. The other is that the throughput recovery during the
transition period takes a longer time. That is, the framework
becomes less responsive to the working set shift and keeps
its last working set in the memory for a longer time. Note
that after a key space rotation, the last working set is accessed
only less than the current working set. With a larger access
unit, each read causes access of multiple keys in the same
subtree, which immediately makes the subtree more difficult to
be released. Therefore, it takes a longer time for the distinction
of access density between the old and current working sets
to be revealed to the subtree release thread. As established
working set usually lasts for a much longer time, this longer
transition period is not expected to be an issue.

In comparison, B+-B+ can almost instantly complete the

8



Workloads Description
Load 100% Random write
A 50% Read, 50% Update
B 95% Read, 5% Update
C 100% Read
D 95% Read Latest, 5% Update
E 95% Scan (average scan length 50, maximum 100), 5% Update
F 50% Read-Modify-Write, 50% Read

TABLE III: Description of the YCSB Benchmarks

Fig. 8: Throughput of with the YCSB benchmarks

transition. It conducts its replacement consistently at the page
granularity, rather than release of the subtrees of variable size.
This simplistic approach is more effective for a well-regulated
access pattern. However, its indexing of keys at the page
granularity compromises the memory space efficiency, leading
to a much lower throughput than ART-B+.

E. The YCSB Benchmarks

The YCSB suite [19] is a popular set of benchmarks to
evaluate the performance of indexes and databases. We wrote
a test bench for the IndeXY framework to support YCSB
benchmarks, which generates Zipfian-distributed accesses with
a skewness factor of 0.7 in each of the benchmarks. The initial
Load phase is completed with random writes (320 million 16-
byte KV pairs on the Index Y). The other benchmark (A, B,..F)
starts after the ”Load”. Each benchmark uses four threads and
sends 320 million requests. The index memory limit is still
5GB. A description of the YCSB benchmarks is in Table III.

The throughput of the three systems with the benchmarks
is shown in Figure 8. Note that its Y axis is in a logarithmic
scale. As shown, the Load phase reveals the largest throughput
difference between ART-LSM/ART-B+ and B+-B+(over 30X).
This is an observation consistent with that in Section III.B.
After the memory limit is reached, the I/O operation becomes
the performance bottleneck. Random writes to the B+-tree-
based Index Y causes frequent read-modify-write operations
on the leaf node and structural modification operations (SMO)
such as leaf node split/merge and tree-rebalancing operations.
All these operations lead to write amplification. The more
random the writes are, the more significant the amplification
is. Facilitated by the framework, ART-B+ makes the issue less
serious. In ART-B+, most of writes are produced by the pre-
cleaning operations on its Index X, which have made every
effort to form batched writes in a limited key region. The
reduced randomness makes ART-B+’s throughput improved
by 3X over B+-B+.

Comparing the throughput with Benchmarks A, B, and C
with increasingly fewer updates, B+-B+’s throughput improves
(although it is still consistently lower than that of ART-LSM
and ART-B+). Because of the Zipfian updates, the writes are
not sequential, leading to the write amplification. That’s why
Benchmark A with 50% update receives the lowest throughput.
Another reason why B+-B+ has lower throughput is that it
cannot keep a larger portion of the working set in the memory
to serve more reads from the memory because of its use
of page granularity for in-memory index organization. With
50% of the reads followed by writes, Benchmark F is another
workload that compromises B+-B+’s throughput.

We have an interesting observation on Benchmark E, where
ART-LSM has a substantially lower throughput. 95% of the
requests in Benchmark E are scans. While none of the systems
can keep its working set entirely in the memory, some of
the scans must be carried out on the disk. As the LSM tree
is notoriously inferior in its support of scan operation with
its multi-level structure [20]–[22], ART-LSM’s throughput is
lower than the other two’s throughput by more than 40%.
As the framework provides the means and convenience for
adopting various indexes as Index X or Index Y, for scan-
intensive workloads one should consider other scan-friendly
indexes to replace LSM-tree or select an LSM tree design
optimized for scan operation [23].

Benchmark D is a benchmark that reads the latest ”Load”
keys (the most recent 20% of all ”Load” keys). In the systems
that use ART tree as their Index X, these latest keys are still
held in the memory. These reads are all hits in the Index X.
However, B+-B+ cannot keep them all in memory with its
page-based memory data organization, leading to read misses
and much lower throughput.

F. The TPC-C Benchmark

The TPC-C benchmark is widely used for evaluating the
performance of OLTP databases [24]. It simulates a realistic
mix of read, insert, update, and scan operations across various
tables. We integrated the IndeXY implementation into the
TPC-C engine in LeanStore’s codebase and experimented with
two of its five types of transactions (New Order and Payment).
The New-Order and Payment transactions account for nearly
90% of the workload in TPC-C [25, Page 70]. These two
transactions are sufficient to represent the characteristics of the
TPC-C workload. We use 100 warehouses in TPC-C workload,
which initially have around 10GB. 50% of all the transactions
in the workload are from New Order and the remaining 50%
are from Payment. Of the nine tables accessed in the service
of the transactions the orderline table is the largest one (its
index size is over 10X larger than any other table’s index).
Therefore, in this evaluation we make only this index to be
swappable and apply the framework to it. As the framework’s
Index X, the index is implemented either as an ART tree or
a B+ tree. We limit all the memory used by the workload to
be 30GB. The orderline index keeps receiving insert requests
and growing its size. When the memory limit is reached, the

9



(a) Two Threads (b) Four Threads (c) Eight Threads (d) Sixteen Threads

Fig. 9: Throughput of the three systems under the TPC-C workload with 100 warehouses and various number of threads

(a) Four KB Page Size (b) Eight KB Page Size (c) Sixteen KB Page Size

Fig. 10: Throughput of the three systems under TPC-C workload with different page sizes
Fig. 11: Throughput and disk
I/O under TPC-C workload

framework reduces orderline’s Index X to keep the memory
size for the workload within the limit.

In the first set of experiments, we configure the B+ tree
page size of ART-B+ and B+-B+ to 4KB and vary the number
of threads from 2, 4, 8, to 16. The throughput of the index
systems (in terms of thousand transactions per second) is
shown in Figure 9. Transactions from Payment do not access
the orderline index. They only access indexes that have been
kept in the memory. In contrast, transactions from the New
Order intensively insert new keys into the orderline index and
extend it into Index Y on the disk in ART-LSM and ART-
B+. The performance difference between the systems mainly
is attributed to these transactions.

Consistent to what we have observed on ART-LSM and
ART-B+ under write-intensive workloads, in the first phase of
the execution when memory is not yet filled, the throughput
stays at a high level. When the thread number is increased,
the peak throughput also increases (by around 8X when the
thread count increases from 2 to 16), indicating that the CPU
is not yet fully utilized. However, when the memory use
reaches to its limit, the execution enters its second phase
where the pre-cleaning and subtree release take place. In
this phase, increasing thread count barely leads to throughput
increase (the only exception is ART-LSM from 2 threads to
4 threads), as the performance bottleneck has moved to the
disk. Furthermore, in this phase, the two systems behave very
differently. First, ART-LSM has a much higher throughput.
The inserts in the orderline Index X take place randomly
in the key space. However, at each random place, there are
multiple keys (around 5-15 KV pairs with a total size of

0.5KB-1KB). The ART-LSM’s Index Y is resistant to the
negative impact of random writes. In comparison, the ART-
B+’s Index Y is sensitive even to these half-random-half-
sequential writes. Second, ART-LSM’s throughput fluctuates.
With non-sequential writes, the compaction operations in the
LSM tree index are triggered in the background, which impacts
the quality of the frontend service.

The performance behavior of B+-B+ in response to the
mixed workload is interesting. First, the access pattern is lo-
cally sequential and globally random. Second, it is mixed with
CPU-intensive transactions from Payment and I/O-intensive
transactions from New Order (due to constant write-backs).
As we have indicated, B+-B+ is actually LeanStore. In the
LeanStore’s replacement strategy, non-accessed pages are se-
lected as replacement candidates for writing back. The write-
backs are triggered and carried out intensively once memory
limit is reached to lower the memory size well below the
limit. This corresponds to a time period of low throughput on
the B+-B+ plots. It then takes another time period to receive
inserts without immediately writing these dirty to the disk.
This corresponds to the time period with small a number
of writes and thus higher throughput. In comparison, ART-
LSM/ART-B+ uses pre-cleaning to spread out the write-backs
constantly to the entire second execution period. Accordingly,
they achieve a relatively stable performance (especially for
ART-B+ with the compaction operations).

The major source of performance loss with the use of B+
as the Index Y is the disk read/write amplification due to on-
disk lead node split/merge. A common belief is that using a
larger page size would aggravate the issue. To validate the

10



belief, we increase the page size from 4KB for the systems
considered in Figure 9(c) to 8KB and then further to 16KB and
see how the throughput of ART-B+ and B+-B+ change. The
results are shown in Figures 10(b) and (c). Note that the plot
for ART-LSM does not change with the page size variation as
it uses LSM tree as its Index Y. Surprisingly, we find out that
their throughput increases significantly. For example, the lower
throughput of B+-B+ in the second phase correspondingly
increases from 30 KTPS (Kilo Transactions Per Second) to
60 KPTS and then to 130 KPTS. The throughput of ART-B+
is similarly increased. We look into the write-back strategy
of LeanStore (both of them use LeanStore’s write buffer
management), where a page that is more dirtied (containing
more dirty data) is more likely to be selected for early write-
back. A smaller page for the orderline index makes it easier to
be filled with dirty (locally sequential) data and then evicted
to the disk. Note that inserts to the index are globally random.
When future inserts come back to a key space covered by a leaf
node and the leaf node has been evicted to the disk, a large
performance penalty (on-disk leaf node split/merge) occurs.
However, with a leaf node of a larger page size, it is more
likely it is still in the memory and has spare space in the page-
sized node to quickly in-place accommodate the new insert
keys without any overhead disk I/O. The particular access
pattern of the benchmark causes this seemingly surprising
outcome. The uncertainty on the impact of adjusting page
size in different access patterns illustrates the value of this
framework that enables flexible and decoupled index choices.
O simply tuning an index (or indexing system) to adapt to
workload characteristics is adequate.

In contrast, RocksDB as a data structure optimized for
on-disk random writes, its in-memory performance (on its
cached data) and caching efficiency are way worse than an In-
deXY index. With a not-all-write TPC-C workload RocksDB’s
throughput is much lower. (only 2-3KTPS).

To clearly observe scalability of the indexes, we show
the aggregate throughput of ART-LSM, ART-B+, and B+-B+
during the phase before the memory limit is reached (in-
memory throughput) and when the limit has reached (on-
disk throughput) with different thread counts at Figure 11.
While the in-memory throughput scales well, their on-disk
throughput does not scale. To understand the bottleneck, we
measure their disk I/O throughput (see in Figure 11). With
more sequential writes ART-LSM’s disk throughput is higher
than ART-B+’s, which is then higher than B+-B+’s. However,
the disk throughput of ART-LSM and ART-B+ barely grows
with number of threads. The fact that disk I/O is the per-
formance bottleneck explains why their key-insert throughput
does not scale. In contrast, the peak throughput of B+-B+ in
the phase scales more. Correspondingly, Figure 11 shows that
its disk throughput scales better.

G. Guidelines on Selection of Indexes X and Y

The IndeXY framework turns the design of a new extensible
index over memory and disk into a process of selecting
two indexes, each for one device. Still, a judicious selection

could make a difference in the resulting extensible index’s
performance and its stability. According to our experience,
here are some informative guidelines for the selection.

• For Index X, the framework expects a balanced tree
structure whose inner node has an extra 2-4 unused bytes
for the framework’s use (e.g., D/C bits, sampled access
frequency, and subtree size). Some in-memory indexes
have assigned their node size and placement with the 64
cacheline [26], [27]. It is important not to break the design
consideration to retain its high performance. For the sake
of space and time efficiency, the framework only requires
this space from the inner nodes at the higher levels.

• Indexes X and Y should be selected according to expected
workloads and access requirements. For example, to sup-
port scan, hash table cannot be used. If scan is frequently
used, RocksDB isn’t a good choice for Index Y.

• For the Index Y candidate, it is desirable for it to
come with its own write buffer and read cache, such
as RocksDB’s MemTable and block cache. So that the
framework can directly use them as its transfer buffer.

• Index Y’s selection highly depends on the expected
workloads. If the workload only grows the Index X
occasionally into a size larger than its limit, any on-
disk index would suffice. However, if it likely receives
intensive inserts to constantly exceed the limit and/or
shift its working set to the cold data (that is mostly
only available on the disk), one must carefully analyze
its access patterns in his selection, such as read or write
dominant, sequential or random, access size, and stable
over time or not. The challenge is on the decision for
a workload with mixed access patterns, such as random
write and scan, that makes any single choice, such as
LSM tree, to be suboptimal. As a future extension of the
framework, we will consider the co-existence of more
than one Index Y, each optimized for one access pattern.
Access to different Index Xes or different key regions in
an Index X is directed into the most-friendly Index Y.

IV. RELATED WORKS

It has been well aware that any on-disk index needs to be
extended into the memory to take advantage of the DRAM’s
high speed, and any in-memory index may grow into a size
larger than the available memory and spill into the disk to take
advantage of its high capacity. Works in the two directions are
abundant and related to the IndeXY framework.

A. Extension of On-disk Index into the Memory

Most of the on-disk data structures may simply use the OS-
managed buffer cache for its extension. However, database
systems usually bypass the system buffer. Instead, they manage
their own buffer cache to leverage their better understanding
of data access pattern in the replacement policy design [28]–
[30]. Some recent works attempt to optimize the self-managed
cache to better exploit the DRAM’s high performance. One
performance deficiency is due to a straightforward reuse of
one-disk data organization in the memory [31], [32]. For

11



example, a pointer in an on-disk index page is a disk page
address. When the page is read to the memory cache, the
disk address needs to be translated into a memory page
address upon each access via the pointer. To address the issue,
LeanStore uses the pointer unswizzling technique to remove
the indirection [9]. This is a telling example illustrating the
negative impact of keeping an on-disk index organization in
its in-memory presence on memory performance.

Another such example is to keep the on-disk page or-
ganization directly in the cache. When only one or a few
keys in a page are hot, the entire page must be cached,
compromising the memory space efficiency. This is an issue
in LeanStore and in the read cache of LSM-tree KV store
design (e.g., RocksDB [15]). The RocksDB addresses this
issue partially in its separately managed write buffer (the
MemTable), where dirty keys are organized in an in-memory
index (a skip list), before they are serialized and written
to the disk. This issue motivates the proposal of the 2-tree
architecture where hot keys are organized into a memory index
at the key granularity for high memory efficiency [33]. Another
effort in this direction is the AC-Key that maintains a KV
cache in addition to the existing block cache in RocksDB [34].
However, while these are timely efforts in the right direc-
tion, without a systematic solution their designs leave many
questions unanswered. For example, the 2-tree design simply
transforms a block-based replacement strategy into a record-
based (or key-based) strategy. This requires tracking access
to each individual key and scanning a very large number
of keys for replacement. This is likely not affordable. By
simultaneously maintaining a KV cache and a block cache,
AC-Key faces the challenge of allocating cache space between
them. Furthermore, often neither individual keys nor blocks
(pages) are the right granularity to batch the writing back
with an ever-changing access pattern. Realizing the issue and
challenge, Umbra uses variable-size pages to organize data in
the buffer manager [35]. However, deciding how to vary the
page size itself becomes a problem.

In contrast, the IndeXY framework uses an inner node (or
subtree) covering a set of keys in a local key region. Its
size is variable adapting to the current access pattern. The
access tracking and replacement design are also carried out
at the dynamically adjustable granularity. Additionally, as a
framework, this solution provides more flexibility and a larger
space for further expansion and optimization.

B. Extension of In-memory Index into the Disk

In-memory databases have become popular in recent years
in pursuit of the highest performance possible for a database
system [36]–[38]. However, these systems are mostly designed
by assuming the systems will not run out of memory. They pro-
vide warning to their users asking them to keep their database
well below the available memory [39], [40]. Otherwise, the
virtual memory would starting swapping pages to the disk
even leading to page thrashing. There have been works to add
a new component to the databases so that the out-of-memory
situation can be more effectively handled.

While data in the in-memory databases are usually managed
in granularity that is much smaller than page, a major effort to
address is on how to track and identify small data items in a
lightweight way for moving them to the disk. Anti-Caching is
such a design [8]. It manages hot memory resident data at the
tuple granularity. To this end, each relation table has an LRU
list across the tuples. Each tuple has additional 8 bytes as space
overhead for recording access history, which is too expensive.
Accordingly, it doesn’t support out-of-memory index and all
indexes must be fully in the memory. Indexes in an in-
memory database may consume over 50% of the memory [41].
Siberia [7], a component of the Hekaton database [42], keeps
hot tuples in the in-memory hot store, and cold data in a
traditional page-based on-disk cold store. Knowing that it can
be prohibitive for tracking hot data at a small granularity,
it resorts to offline access log analysis. However, it cannot
quickly respond to access pattern changes. In contrast, IndeXY
represents the first effort to develop a generic framework
supporting index integration across memory and disk.

A variant of VoltDB has attempted to leverage OS’s vir-
tual memory to support large-than-memory databases [43]. It
moves hot tuples to memory-pinned pages and cold tuples to
the unpinned pages. However, it still needs to always track
access at the tuple granularity. Reorganizing data in different
pages is not a straightforward task. Aware of the gap of
data representation granularity between memory and disk, Ma
et al. consider introduction of a hierarchy of storage device
(DRAM, NVRAM, 3D XPoint SSD,and SSD) with different
access granularity and tailor the data migration strategy for
each storage device [44]. The IndeXY framework addresses
the challenge of tracking access with small data granularity
by using access-pattern-aware size-variable subtrees as the
tracking objects. It doesn’t need additional hardware support
and provide a framework for flexibility and future expansion.

V. CONCLUSION

In this paper, we propose a framework that allows two
indexes, one designed for memory and the other for the disk,
to work together as one integrated extensible index across the
memory and disk. Compared to other efforts on making an
index extensible across the boundary of memory and disk, the
advantage of the framework comes from two of its features,
which are decoupling and integration. Decoupling the design
of in-memory Index X and on-disk Index Y gives the index
designers the freedom of index choice and space for device-
customized optimization. Integration support for Indexes X
and Y, including framework built-in capabilities of light-
weight access monitoring, identifying subtrees for write-backs
and memory release, gives the designers the convenience to
obtain a well-coordinated extensible index.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work was partially supported by Tencent America
LLC. with a generous gift fund.

12



REFERENCES

[1] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-store: A high-performance, distributed main memory
transaction processing system,” Proc. VLDB Endow., vol. 1, no. 2,
p. 1496–1499, aug 2008. [Online]. Available: https://doi.org/10.14778/
1454159.1454211

[2] Wikimedia. (2002) Microsoft sql server. https://en.wikipedia.org/wiki/
Microsoft SQL Server.

[3] ——. (2005) Monetdb. https://en.wikipedia.org/wiki/MonetDB.
[4] R. Stoica and A. Ailamaki, “Enabling efficient OS paging for main-

memory OLTP databases,” in Proceedings of the Ninth International
Workshop on Data Management on New Hardware, DaMoN 2013,
New York, NY, USA, June 24, 2013, R. Johnson and A. Kemper, Eds.
ACM, 2013, p. 7. [Online]. Available: https://doi.org/10.1145/2485278.
2485285

[5] M. Stonebraker, “Operating system support for database management,”
Commun. ACM, vol. 24, no. 7, pp. 412–418, 1981. [Online]. Available:
https://doi.org/10.1145/358699.358703

[6] B. Fitzpatrick. (2004) Distributed caching with memcached. https://
www.linuxjournal.com/article/7451.

[7] A. Eldawy, J. Levandoski, and P. Larson, “Trekking through siberia:
Managing cold data in a memory-optimized database,” in International
Conference on Very Large Databases (PVLDB Vol. 7, Issue. 11), June
2014. VLDB - Very Large Data Bases, September 2014.

[8] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik,
“Anti-caching: A new approach to database management system
architecture,” Proc. VLDB Endow., vol. 6, no. 14, p. 1942–1953, sep
2013. [Online]. Available: https://doi.org/10.14778/2556549.2556575

[9] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann, “Leanstore:
In-memory data management beyond main memory,” in 34th IEEE
International Conference on Data Engineering, ICDE 2018, Paris,
France, April 16-19, 2018. IEEE Computer Society, 2018, pp.
185–196. [Online]. Available: https://doi.org/10.1109/ICDE.2018.00026

[10] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, C. S. Jensen, C. M. Jermaine, and X. Zhou,
Eds. IEEE Computer Society, 2013, pp. 38–49. [Online]. Available:
https://doi.org/10.1109/ICDE.2013.6544812

[11] D. De Leo and P. Boncz, “Packed memory arrays - rewired,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE), 2019,
pp. 830–841.

[12] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis, “Hot: A
height optimized trie index for main-memory database systems,” in
Proceedings of the 2018 International Conference on Management
of Data, ser. SIGMOD ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 521–534. [Online]. Available:
https://doi.org/10.1145/3183713.3196896

[13] V. Alvarez, S. Richter, X. Chen, and J. Dittrich, “A comparison of
adaptive radix trees and hash tables,” in 2015 IEEE 31st International
Conference on Data Engineering, 2015, pp. 1227–1238.

[14] Z. Xie, Q. Cai, G. Chen, R. Mao, and M. Zhang, “A comprehensive
performance evaluation of modern in-memory indices,” in 2018 IEEE
34th International Conference on Data Engineering (ICDE), 2018, pp.
641–652.

[15] M. D. E. Team, “Rocksdb,” 2018. [Online]. Available: https:
//rocksdb.org

[16] A. Alhomssi and Demian, “Leanstore,” 2018. [Online]. Available:
https://github.com/leanstore/leanstore

[17] F. Scheibner, C. Lou, and M. Markakis, “Leanstore,” 2018. [Online].
Available: https://github.com/flode/ARTSynchronized

[18] M. D. E. Team, “Rocksdb,” 2018. [Online]. Available: https:
//github.com/facebook/rocksdb/tree/v8.1.1

[19] M. Mutsuzaki, “Ycsb,” 2018. [Online]. Available: https://github.com/
brianfrankcooper/YCSB/

[20] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“WiscKey: Separating keys from values in SSD-conscious storage,”
in 14th USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA: USENIX Association, Feb. 2016,
pp. 133–148. [Online]. Available: https://www.usenix.org/conference/
fast16/technical-sessions/presentation/lu

[21] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, “HashKV: Enabling
efficient updates in KV storage via hashing,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, Jul. 2018, pp. 1007–1019. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/chan

[22] A. Papagiannis, G. Saloustros, G. Xanthakis, G. Kalaentzis, P. Gonzalez-
Ferez, and A. Bilas, “Kreon: An efficient memory-mapped key-value
store for flash storage,” ACM Trans. Storage, vol. 17, no. 1, jan 2021.
[Online]. Available: https://doi.org/10.1145/3418414

[23] W. Zhong, C. Chen, X. Wu, and S. Jiang, “REMIX: Efficient range
query for LSM-trees,” in 19th USENIX Conference on File and
Storage Technologies (FAST 21). USENIX Association, Feb. 2021, pp.
51–64. [Online]. Available: https://www.usenix.org/conference/fast21/
presentation/zhong

[24] T. P. P. Council, “tpc − c home,” 2018. [Online]. Available:
https://www.tpc.org/tpcc/

[25] ——, “tpc benchmark c,” 2010. [Online]. Available: https:
//www.tpc.org/tpc documents current versions/pdf/tpc-c v5.11.0.pdf

[26] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in European Conference on Computer
Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys
’12, Bern, Switzerland, April 10-13, 2012, P. Felber, F. Bellosa,
and H. Bos, Eds. ACM, 2012, pp. 183–196. [Online]. Available:
https://doi.org/10.1145/2168836.2168855

[27] X. Zhao, C. Zhong, and S. Jiang, “Turbohash: A hash table for
key-value store on persistent memory,” in Proceedings of the 16th
ACM International Conference on Systems and Storage, SYSTOR
2023, Haifa, Israel, June 5-7, 2023, Y. Moatti, O. Biran, Y. Gilad,
and D. Kostic, Eds. ACM, 2023, pp. 35–48. [Online]. Available:
https://doi.org/10.1145/3579370.3594766

[28] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The bw-tree:
A b-tree for new hardware platforms,” in 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, C. S. Jensen, C. M. Jermaine, and X. Zhou,
Eds. IEEE Computer Society, 2013, pp. 302–313. [Online]. Available:
https://doi.org/10.1109/ICDE.2013.6544834

[29] ——, “LLAMA: A cache/storage subsystem for modern hardware,”
Proc. VLDB Endow., vol. 6, no. 10, pp. 877–888, 2013. [Online].
Available: http://www.vldb.org/pvldb/vol6/p877-levandoski.pdf

[30] H. Kimura, “FOEDUS: OLTP engine for a thousand cores and
NVRAM,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, T. K. Sellis, S. B. Davidson, and
Z. G. Ives, Eds. ACM, 2015, pp. 691–706. [Online]. Available:
https://doi.org/10.1145/2723372.2746480

[31] A. Kemper and D. Kossmann, “Adaptable pointer swizzling strategies
in object bases: Design, realization, and quantitative analysis,”
VLDB J., vol. 4, no. 3, pp. 519–566, 1995. [Online]. Available:
http://www.vldb.org/journal/VLDBJ4/P519.pdf

[32] S. J. White and D. J. DeWitt, “Quickstore: A high performance
mapped object store,” in Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, Minneapolis,
Minnesota, USA, May 24-27, 1994, R. T. Snodgrass and M. Winslett,
Eds. ACM Press, 1994, pp. 395–406. [Online]. Available: https:
//doi.org/10.1145/191839.191919

[33] X. Zhou, X. Yu, G. Graefe, and M. Stonebraker, “Two is better than
one: The case for 2-tree for skewed data sets,” in 13th Conference
on Innovative Data Systems Research, CIDR 2023, Amsterdam, The
Netherlands, January 8-11, 2023. www.cidrdb.org, 2023. [Online].
Available: https://www.cidrdb.org/cidr2023/papers/p57-zhou.pdf

[34] F. Wu, M.-H. Yang, B. Zhang, and D. H. Du, “AC-Key: Adaptive
caching for LSM-based Key-Value stores,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association,
Jul. 2020, pp. 603–615. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/wu-fenggang

[35] T. Neumann and M. J. Freitag, “Umbra: A disk-based system with
in-memory performance,” in 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org, 2020. [Online].
Available: http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[36] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees, “The SAP HANA database – an architecture overview,” IEEE
Data Eng. Bull., vol. 35, no. 1, pp. 28–33, 2012. [Online]. Available:
http://sites.computer.org/debull/A12mar/hana.pdf

13



[37] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in 2011 IEEE 27th
International Conference on Data Engineering, 2011, pp. 195–206.

[38] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy
transactions in multicore in-memory databases,” in ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, M. Kaminsky and
M. Dahlin, Eds. ACM, 2013, pp. 18–32. [Online]. Available:
https://doi.org/10.1145/2517349.2522713

[39] Oracle, “Oracle timesten products and technologies,” 2008.
[Online]. Available: https://www.oracle.com/technetwork/products/
timesten/tt70-wp-timesten-tech-133125.pdf

[40] M. Colgan, “Oracle database in-memory population,”
2019. [Online]. Available: https://blogs.oracle.com/in-memory/post/
oracle-database-in-memory-population

[41] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen,
“Reducing the storage overhead of main-memory oltp databases with
hybrid indexes,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1567–1581. [Online].

Available: https://doi.org/10.1145/2882903.2915222
[42] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher,

N. Verma, and M. Zwilling, “Hekaton: SQL server’s memory-optimized
OLTP engine,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York,
NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava, and
D. Papadias, Eds. ACM, 2013, pp. 1243–1254. [Online]. Available:
https://doi.org/10.1145/2463676.2463710

[43] R. Stoica and A. Ailamaki, “Enabling efficient os paging for main-
memory oltp databases,” in Proceedings of the Ninth International
Workshop on Data Management on New Hardware, ser. DaMoN ’13.
New York, NY, USA: Association for Computing Machinery, 2013.
[Online]. Available: https://doi.org/10.1145/2485278.2485285

[44] L. Ma, J. Arulraj, S. Zhao, A. Pavlo, S. R. Dulloor, M. J. Giardino,
J. Parkhurst, J. L. Gardner, K. Doshi, and S. Zdonik, “Larger-than-
memory data management on modern storage hardware for in-memory
oltp database systems,” in Proceedings of the 12th International
Workshop on Data Management on New Hardware, ser. DaMoN ’16.
New York, NY, USA: Association for Computing Machinery, 2016.
[Online]. Available: https://doi.org/10.1145/2933349.2933358

14


