
LIRS2: An Improved LIRS Replacement Algorithm
Chen Zhong

University of Texas at Arlington
Arlington, TX

chen.zhong@mavs.uta.edu

Xingsheng Zhao
University of Texas at Arlington

Arlington, TX
xingsheng.zhao@mavs.uta.edu

Song Jiang
University of Texas at Arlington

Arlington, TX
song.jiang@uta.edu

ABSTRACT
A block replacement algorithm keeps receiving attention on
improvement of its hit ratio. Many replacement algorithms
have been proposed, among which LIRS stands out with its
consistently higher hit ratio across various workloads with
low time and space overheads. However, there are still access
patterns where LIRS produces sub-optimal hit ratio and has
room for further improvement.

In this paper, we replace the locality measure used by LIRS,
the reuse distance, with a more stable and thus more reliable
measure, to predict future access time. The new measure is
the sum of a block’s two recent consecutive reuse distances.
It addresses the issue with the reuse distance, which is more
likely to fluctuate and mislead replacement decisions. We
proposed LIRS2 by incorporating this new measure into the
LIRS algorithm to reduce its miss ratio. We further propose
a replacement design that allows a responsive adaptation
between LIRS2 and LRU so that LRU-friendly access patterns
can be well accommodated. We have implemented LIRS2 and
its adaptive variant. With extensive experiments on traces
from different sources, we show that the algorithms can
consistently improve cache miss ratio with low overheads.

CCS CONCEPTS
• Information systems→ Block / page strategies.

KEYWORDS
Storage system, cache, replacement algorithm
ACM Reference Format:
Chen Zhong, Xingsheng Zhao, and Song Jiang. 2021. LIRS2: An
Improved LIRS Replacement Algorithm. In The 14th ACM Inter-
national Systems and Storage Conference (SYSTOR ’21), June 14–
16, 2021, Haifa, Israel. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3456727.3463772

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8398-1/21/06.
https://doi.org/10.1145/3456727.3463772

1 INTRODUCTION
A block replacement algorithm is one of the core components
in a memory/storage hierarchy. A block can be a cacheline
in a CPU cache, a disk block in an SSD or hard disk, or a unit
of data for caching in a distributed file system. Importance
of such algorithms is beyond doubt. The algorithm plays a
critical role in the efforts of making effective access speed
of the hierarchy close to the fastest level’s speed. Over the
years there have been numerous block replacement algo-
rithms proposed attempting to make the best replacement
decisions. Here the “best" block for replacement is defined
as the currently cached block whose next access will occur
farthest in the future. The distance between the current time
and a block’s next access time is the locality measure used by
the OPT replacement algorithm [1] to decide its replacement
block. OPT is provably the optimal algorithm producing
the lowest miss ratio. However, OPT is an offline algorithm,
whose best replacement choices are not available online.

A basic function of any online replacement algorithm
is to collect and interpret history access information and
predict future access behavior accordingly. While decision-
making of replacement algorithms relies on the existence of
locality (the tendency of the same set of data to be repetitively
accessed over a short period of time), the interpretation of
history access is the process of quantifying strength of the
locality. Specifically, the strength measures how repetitively
a block is accessed.While everyone agrees that blocks of high
locality strength, aka hot blocks, should stay in the cache and
the one with the lowest strength should be replaced, the key
difference between different algorithms is on the measure
they use to quantify the strength.
The OPT algorithm uses the time distance between the

current time and a block’s next access time, named next time
distance and denoted 𝑇𝑛𝑒𝑥𝑡 in Figure 2, which delineates a
specific block’s access timings in a time line, to measure
the locality strength. While OPT’s locality strength measure
cannot be available online, other algorithms define their mea-
sures based on history access information. For example, LRU
uses the time distance from a block’s last access time to the
current time, named last time distance and denoted 𝑇𝑙𝑎𝑠𝑡 ,
to measure the strength. LFU uses count of recent accesses
(access frequency). To take the frequency into account with-
out carrying too-old history access, an algorithm may adopt

https://doi.org/10.1145/3456727.3463772
https://doi.org/10.1145/3456727.3463772
https://doi.org/10.1145/3456727.3463772


SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

0 5 10
Virtual Time (x103)

0

500

1000

1500

2000

Bl
oc

k 
Nu

m
be

r

(a) zigzag

0 5 10
Virtual Time (x103)

0

500

1000

1500

2000

Bl
oc

k 
Nu

m
be

r
(b) scan

0 1 2
Cache Size (x103 Blocks)

25

50

75

100

M
iss

 R
at

io
 (%

)

LRU
LIRS
LIRS2
OPT

(c) zigzag

0 1 2
Cache Size (x103 Blocks)

25

50

75

100
M

iss
 R

at
io

 (%
)

LRU
LIRS
LIRS2
OPT

(d) scan
Figure 1: Accessed blocks at different times for zigzag and scan
patterns ((a) and (b), respectively), and their respective miss ratio
curves ((c) and (d)). LIRS2 is the algorithm proposed in the paper.

reuse distance, which is the time period between a block’s
second-to-last access and its last access, denoted 𝑇𝑟𝑒𝑢𝑠𝑒 , to
measure the strength. Some algorithms consider multiple
measures. For example, LRFU [18] uses a weighted combina-
tion of the last time distance (recency) and access frequency.
ARC [17] integrates the two measures without actual compu-
tation for higher efficiency. LRU-2 [23] uses the sum of𝑇𝑟𝑒𝑢𝑠𝑒
and𝑇𝑙𝑎𝑠𝑡 , or the distance from a block’s second-to-last-access
time to the current time, denoted 𝑇𝑙𝑎𝑠𝑡2.
Choice of strength measure has a direct impact on the

cache miss ratio. For example, let us assume a block is reg-
ularly accessed at a fixed interval, or the (next) reuse dis-
tance (𝑇𝑟𝑒𝑢𝑠𝑒 = 𝑇𝑙𝑎𝑠𝑡 + 𝑇𝑛𝑒𝑥𝑡 ) is constant. OPT uses 𝑇𝑛𝑒𝑥𝑡 to
make the optimal replacement decision. LRU uses 𝑇𝑙𝑎𝑠𝑡 to
estimate 𝑇𝑛𝑒𝑥𝑡 . Because 𝑇𝑟𝑒𝑢𝑠𝑒 is a constant, the estimation,
and thus the prediction, is always wrong. The most recent
accessed block (with small𝑇𝑙𝑎𝑠𝑡 ) is actually the farthest to be
re-accessed (with large 𝑇𝑛𝑒𝑥𝑡 ). When the cache is not large
enough to hold all the blocks, LRU has a 100% miss ratio.
The access pattern is demonstrated in Figure 1b and the miss
ratio is shown in Figure 1d. For this particular access pattern,
LRU-2 performs similarly as LRU. Algorithms that consider
access frequency, such as LFU and LRFU, are able to perform
well on the access pattern. However, such algorithms can be
too expensive as they need to track every block’s access fre-
quency and cannot quickly respond to access pattern change.
A milestone development in the efforts of accurately mea-
suring locality strength is the LIRS algorithm [10], which
uses the larger of reuse distance and the last time distance
(𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒 ,𝑇𝑙𝑎𝑠𝑡 )), denoted as 𝑇𝑙𝑖𝑟𝑠 , to measure locality. For
the aforementioned access pattern, because 𝑇𝑟𝑒𝑢𝑠𝑒 is always
not smaller than 𝑇𝑙𝑎𝑠𝑡 , 𝑇𝑙𝑖𝑟𝑠 is constant and every block has

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝐵# 𝐵$ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝐵% 𝐵&

𝑇()*+𝑇,-.+𝑇/)0.)

𝐴 𝐴 𝐴 𝐴
Current Time

𝑇/)0.)2 + 𝑇/)0.)4
𝑇,-.+4

𝑇𝑖𝑚𝑒	𝐿𝑖𝑛𝑒

Figure 2: Example time line showing locality measures for Block A.

the same 𝑇𝑙𝑖𝑟𝑠 . Once a block is selected as a hot one, other
blocks will not have a smaller 𝑇𝑙𝑖𝑟𝑠 to make it become a (rel-
atively) cold block. The hot blocks then stay in the cache
producing access hits. And its miss ratio is inversely propor-
tional to the cache size, much better than LRU, as shown
in Figure 1d. Many studies have found that for most work-
loads LIRS’s performance is significantly better than other
state-of-the-art algorithms [15, 17, 32].

In the meantime, we identify access patterns where LIRS
has its critical weakness or has room for improvement. One
illustrative example is a zigzag access pattern, where a file or
data set is repeatedly accessed in an alternative order, such
as reading from the file head to its tail and then reversing
the order. As shown in Figure 1c, LRU has miss ratios much
lower than LIRS’s. The reason is that for most blocks a small
𝑇𝑟𝑒𝑢𝑠𝑒 is always followed with a large 𝑇𝑟𝑒𝑢𝑠𝑒 ; and a larger
one is always followed with a small one. Accordingly, LIRS’s
locality measure (𝑇𝑙𝑖𝑟𝑠 ) keeps fluctuating and predicts wrong
next access time. While the exact zigzag access behavior may
not be often observed, the fluctuation of reuse distance is
common. We use the zigzag pattern to highlight the issue.
The fluctuation and its impact on miss ratio in real-world
traces will be presented in Section 3 (e.g., in Figure 5). Be-
cause of high miss penalties in many systems, even moderate
improvement of hit ratio is meaningful. For example, a study
on Facebook’s Memcached system indicates that an increase
of the cache’s hit ratio by 4.1% “represents over 120 million
GET requests per day per server" that would be sent to the
backend system and are now removed [2].
To address this issue, we propose a new locality mea-

sure, which is to use two recent reuse distances to replace
the single reuse distance used in 𝑇𝑙𝑖𝑟𝑠 and denoted 𝑇𝑙𝑖𝑟𝑠2.
That is, 𝑇𝑙𝑖𝑟𝑠2 =𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒1 +𝑇𝑟𝑒𝑢𝑠𝑒2,𝑇𝑟𝑒𝑢𝑠𝑒1 +𝑇𝑙𝑎𝑠𝑡 ), where
𝑇𝑟𝑒𝑢𝑠𝑒1 and𝑇𝑟𝑒𝑢𝑠𝑒2 refer to the most recent reuse distance and
second-to-the-most-recent reuse distance, respectively. By
considering one more reuse distance, it smooths out momen-
tary variation of reuse distance. Reuse distance is a better
locality measure than the last access time (𝑇𝑙𝑎𝑠𝑡 ) used in LRU,
because a block’s 𝑇𝑙𝑎𝑠𝑡 is highly variable (changes with any
block access) and does not steadily indicate the block’s lo-
cality strength. For the same reason, 𝑇𝑙𝑖𝑟𝑠2 can be a better
measure than 𝑇𝑙𝑖𝑟𝑠 . For the zigzag access pattern 𝑇𝑙𝑖𝑟𝑠2 is a
more consistent locality measure that can effectively reveal
true locality strength leading to a lower miss ratio.



LIRS2: An Improved LIRS Replacement Algorithm SYSTOR ’21, June 14–16, 2021, Haifa, Israel

2 THE DESIGN
The LIRS2 algorithm is an enhancement of LIRS by replacing
the reuse distance in its locality measure with sum of two
recent reuse distances. In the design, we need to (1) retain
LIRS’s features that make it stand out among many competi-
tors, including its time and space efficiency; (2) accurately
incorporate the new locality measure into its operations to
select replacement blocks; and (3) remove negative impact of
the “check and trust” strategy adopted in LIRS/LIRS2 for reli-
able block categorization according to their locality strength.

2.1 Block Categorization
LIRS and LIRS2 use 𝑇𝑙𝑖𝑟𝑠 or 𝑇𝑙𝑖𝑟𝑠2 as their respective locality
measures. These measures are then used to predict a block’s
next access time. While replacement of the block with the
farthest next access time is the best choice, a prediction is
used to make replacement decision. In LIRS2, the approach
is to compare and categorize blocks according to their 𝑇𝑙𝑖𝑟𝑠2.
OPT replaces a block whose next access time is𝑚𝑎𝑥𝑜𝑝𝑡 .

All blocks can be accordingly categorized into two sets: the
hot set for blocks whose next access times are earlier than
𝑚𝑎𝑥𝑜𝑝𝑡 , and the cold set for thosewhose next access times are
not earlier than𝑚𝑎𝑥𝑜𝑝𝑡 . In theory, all blocks in the cold set
should not be cached, even if they are just read. In practice,
a block that is brought into the cache should stay there for
at least a minimal amount time before being considered for
replacement, regardless of its locality strength. This is named
“Correlated Reference Period" for “close-in-time subsequent
accesses" to a block [11]. Therefore, a small number of blocks
in the cold set may be cached. And the algorithmmay choose
a block in the cache for replacement.
As an online algorithm does not know the true𝑚𝑎𝑥𝑜𝑝𝑡 ,

it uses its own defined locality measure to estimate it and
defines the hot/cold sets accordingly. A block with a smaller
locality measurement is likely to be re-accessed in the near
future. As an approximation, LIRS2 ranks blocks according to
𝑇𝑙𝑖𝑟𝑠2 values. Blocks of the smallest𝑇𝑙𝑖𝑟𝑠2 values are in the hot
set. If the hot set size is𝑁 blocks, the𝑁 th smallest𝑇𝑙𝑖𝑟𝑠2 value
assumes the role of 𝑚𝑎𝑥𝑜𝑝𝑡 for separating blocks into hot
and cold sets. Because we want all blocks in the hot set (the
hot blocks) always stay in the cache, we let 𝑁 ≤ 𝐶 , where
𝐶 is the cache size in blocks. To set aside a small fraction of
cache space to hold blocks in the cold set, 𝑁 < 𝐶 and 𝐶 − 𝑁

is small.𝐶 −𝑁 blocks of the cache space are allocated to cold
blocks. Thus, a majority cold blocks are not cached.
As long as blocks are categorized into the two sets, a

simple comparison operation upon each block access suf-
fices to maintain the two sets. When a block (Block A) is
accessed, it has a new reuse distance, and has a new 𝑇𝑙𝑖𝑟𝑠2.
Assume 𝑚𝑎𝑥𝑙𝑖𝑟𝑠2 is the 𝑁 th smallest 𝑇𝑙𝑖𝑟𝑠2, and hot Block
B has the 𝑇𝑙𝑖𝑟𝑠2. It is only necessary to compare the new

𝑇𝑙𝑖𝑟𝑠2 with𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. Assume the former is smaller than or
equal to𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. Block A remains as a hot block and there
is no change of the sets’ membership if Block A was a hot
block before the access. Otherwise, Block A is re-categorized
(promoted) from a cold block to a hot one, and Block B is de-
moted into the cold set. In the second case, if Block A is also
non-resident in the cache, a miss occurs, and one resident
block in the cold set is replaced and becomes non-resident.
Alternatively, we assume the new 𝑇𝑙𝑖𝑟𝑠2 is larger than

𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. It can be proved that Block A must be a cold
block before its access. Its 𝑇𝑙𝑖𝑟𝑠2 right after the access is
𝑇𝑙𝑖𝑟𝑠2−𝑎𝑓 𝑡𝑒𝑟 =𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒1−𝑎𝑓 𝑡𝑒𝑟+𝑇𝑟𝑒𝑢𝑠𝑒2−𝑎𝑓 𝑡𝑒𝑟 ,𝑇𝑟𝑒𝑢𝑠𝑒1−𝑎𝑓 𝑡𝑒𝑟+
𝑇𝑙𝑎𝑠𝑡−𝑎𝑓 𝑡𝑒𝑟 ), where𝑇𝑟𝑒𝑢𝑠𝑒1−𝑎𝑓 𝑡𝑒𝑟 ,𝑇𝑟𝑒𝑢𝑠𝑒2−𝑎𝑓 𝑡𝑒𝑟 , and𝑇𝑙𝑎𝑠𝑡−𝑎𝑓 𝑡𝑒𝑟
are the block’s the most recent, second-to-the-most reuse dis-
tances, and the last access time right after the access, respec-
tively. We have 𝑇𝑙𝑎𝑠𝑡−𝑎𝑓 𝑡𝑒𝑟 = 0, 𝑇𝑟𝑒𝑢𝑠𝑒1−𝑎𝑓 𝑡𝑒𝑟 = 𝑇𝑙𝑎𝑠𝑡−𝑏𝑒𝑓 𝑜𝑟𝑒 ,
and 𝑇𝑟𝑒𝑢𝑠𝑒2−𝑎𝑓 𝑡𝑒𝑟 = 𝑇𝑟𝑒𝑢𝑠𝑒1−𝑏𝑒𝑓 𝑜𝑟𝑒 , where 𝑇𝑙𝑎𝑠𝑡−𝑏𝑒 𝑓 𝑜𝑟𝑒 and
𝑇𝑟𝑒𝑢𝑠𝑒1−𝑏𝑒𝑓 𝑜𝑟𝑒 are the block’s last access time and the most
recent reuse distance right before the access, respectively.
Therefore, 𝑇𝑙𝑖𝑟𝑠2−𝑎𝑓 𝑡𝑒𝑟 = 𝑇𝑟𝑒𝑢𝑠𝑒1−𝑏𝑒𝑓 𝑜𝑟𝑒 + 𝑇𝑙𝑎𝑠𝑡−𝑏𝑒𝑓 𝑜𝑟𝑒 . The
block’s 𝑇𝑙𝑖𝑟𝑠2 right before the access 𝑇𝑙𝑖𝑟𝑠−𝑏𝑒𝑓 𝑜𝑟𝑒 =

𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒1−𝑏𝑒𝑓 𝑜𝑟𝑒 + 𝑇𝑟𝑒𝑢𝑠𝑒2−𝑏𝑒𝑓 𝑜𝑟𝑒 ,𝑇𝑟𝑒𝑢𝑠𝑒1−𝑏𝑒 𝑓 𝑜𝑟𝑒 +
𝑇𝑙𝑎𝑠𝑡−𝑏𝑒 𝑓 𝑜𝑟𝑒 ), where 𝑇𝑟𝑒𝑢𝑠𝑒2−𝑏𝑒 𝑓 𝑜𝑟𝑒 is the second-to-the-
most-recent reuse time before the access. Therefore, we have
𝑇𝑙𝑖𝑟𝑠2−𝑎𝑓 𝑡𝑒𝑟 <= 𝑇𝑙𝑖𝑟𝑠2−𝑏𝑒𝑓 𝑜𝑟𝑒 . Because 𝑇𝑙𝑖𝑟𝑠2−𝑎𝑓 𝑡𝑒𝑟 > 𝑚𝑎𝑥𝑙𝑖𝑟𝑠2,
𝑇𝑙𝑖𝑟𝑠2−𝑏𝑒 𝑓 𝑜𝑟𝑒 > 𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. That is, before the access Block A
was a cold block. It remains as a cold block after the access.

With the block categorization, LIRS2 employs a “check
and trust” strategy to determine whether a block is unlikely
to be accessed soon and should be evicted out of the cache
quickly. This “check" takes place at the time when the block
is accessed. It is actually a comparison operation between
𝑇𝑙𝑖𝑟𝑠2 and𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. The outcome of the check is a placement
of the block into one of the two sets. An untrusted block,
which is determined to be unlikely to be accessed soon, is
placed in the cold set. Because only a minimal amount of
cache space is allocated to the set, a resident block in it will be
replaced quickly. This is in sharp contrast with LRU, which
allows any block to stay in the cache until its last access
becomes far behind even if it will never be accessed again.

2.2 The O(1) Algorithm
Quantitatively measuring of 𝑇𝑙𝑖𝑟𝑠2, the reuse distances, or
the last access time to carry out the comparison is in conflict
with the requirement of O(1) time with each block access.

The solution is to set up a queue organized as a linked
list. Each recently accessed block has two presences, named
instances representing the block’s two recent accesses, in the
queue. Each instance records the block number, a flag indi-
cating if the block is hot/cold, a flag indicating if it represents
the block’s most recent access (instance 1) or its second-to-
the-most-recent access (instance 2), and a flag indicating if



SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

Figure 3: Illustration of LIRS2’s execution on an access sequence fo-
cusing on accesses of Block B in the LIRS2 queue. At time 1 , B is a
hot block. At time 2 , B’s instance 2 leaves queue bottom and B be-
comes a cold block. At time 3 , B is re-accessed and becomes a (cold)
resident block. At time 4 , B is early evicted and becomes a non-
resident block due to its cold status. And at time 5 , B is re-accessed
and becomes a hot block.

this block is still in the cache (resident) or has been evicted.
When a block is accessed, a new instance 1 is created and
pushed into the queue from its head (or at the top position
shown in Figure 3). If currently the block has its instance 1
in the list, it changes to instance 2. If the block also has its
instance 2 in the queue, remove this history access record.

As shown in Figure 3, the ordered instances in the queue
reflect recent block access events with one exception, which
is that each block has at most two instances (for two most
recent access events) in the queue regardless of how many
accesses a block has. The queue is used for tracking the time
periods, such as 𝑇𝑙𝑖𝑟𝑠2, 𝑇𝑟𝑒𝑢𝑠𝑒 , and 𝑇𝑙𝑎𝑠𝑡 . To be precise, these
time periods are measured in the number of unique blocks
accessed during the period, not necessarily the number of
accesses in the period, to reflect the fact that multiple ac-
cesses to the same block in a time period do not consume
more cache space.
All hot blocks are resident, and their instances are in the

queue, named LIRS2 queue. The oldest instance 2 of any hot
block is positioned at the tail of the queue (or at the bottom
position shown in Figure 3). When this block is re-accessed,
and its instance 2 at the bottom is removed, the next instance
2 of a hot block in the queue becomes the new bottom and
any instances between the two instance-2s are also removed
to maintain the invariant that the bottom instance must be
a hot block’s instance 2. In this queue, the current time is
represented by the queue top, and𝑚𝑎𝑥𝑙𝑖𝑟𝑠2 is represented by
the queue bottom. For replacement, the resident cold block
that has not been accessed for the longest time is replaced.
To this end, all resident cold blocks are also maintained in a
(short) LRU queue, named CoRe (cold resident) queue.

A key LIRS2 operation is comparison of a block’s new
𝑇𝑙𝑖𝑟𝑠2 (at the time when it is accessed) with𝑚𝑎𝑥𝑙𝑖𝑟𝑠2 for its
categorization. It sounds to be an expensive operation. How-
ever, with the LIRS2 queue it becomes surprisingly efficient:
if the block’s instance 2 is in the queue before the access, it
means new 𝑇𝑙𝑖𝑟𝑠2 ≤ 𝑚𝑎𝑥𝑙𝑖𝑟𝑠2 because the bottom instance
represents𝑚𝑎𝑥𝑙𝑖𝑟𝑠2. As all operations on the LIRS2 and CoRe
queues corresponding to a block access have an O(1) time,
LIRS2 is O(1) efficient. Any decision on the set membership
(hot or cold) can be made by simply checking if the accessed
block exists in a linked list or not. It also takes O(1) time
to find the LRU block in the CoRe queue for replacement.
LIRS2’s operations are illustrated in Figure 3, and its pseudo
code is depicted in Algorithm 1.
As the LIRS2 queue contains non-resident blocks, it is

possibly much longer than an LRU stack (the cache size). To
bound its length, we prune the queue by removing a cold
instance that is closest to the bottom instance (𝑚𝑎𝑥𝑙𝑖𝑟𝑠2) from
the queue once the queue is longer than a threshold. Similar
approach is adopted in LIRS. The threshold is 8 times of the
cache size (in terms of blocks).

Algorithm 1: Pseudo code of LIRS2
/* During the initiation, any cold block turns into a hot

block upon its access until there have been N hot blocks,
where N is the maximal number of hot blocks. */

1 Upon access of Block B
/* its instance 1 is denoted 𝐵1; and its instance 2 is denoted

𝐵2 */

2 if 𝐵2 is in the LIRS2 queue then
3 if 𝐵 is a cold block then
4 Promote it a hot block;
5 Demote the hot block currently at the bottom of the LIRS2 queue

to the CoRe queue;
6 Keep removing any instance at the bottom of the LIRS2 queue

until a hot block’s instance 2 is at the bottom.
7 Remove 𝐵2 from the LIRS2 queue;
8 else
9 𝐵 is set as a cold block;

10 end
11 if 𝐵1 is in the LIRS2 queue then
12 Change it to 𝐵2 (by updating a flag of the instance)
13 Insert 𝐵1 into the LIRS2 queue at its top;
14 if 𝐵 is a non-resident block then // access miss
15 Set the bottom block at the CoRe queue as non-resident (the

replacement block), and remove it from the queue;
16 Set B as a resident block;
17 if 𝐵 is in the CoRe queue then
18 Remove it from the queue;
19 if 𝐵 is a cold block then
20 Insert it into the CoRe queue at its top;

2.3 LIRS2’s Optimization
LIRS2 categorizes a block into one of the two sets at the time
of its access by checking if it was in the LIRS2 queue, and
treats them differently. If a block was not in the queue and is
accordingly placed into the cold set, it will be soon replaced
because this set has been allocated with very limited cache



LIRS2: An Improved LIRS Replacement Algorithm SYSTOR ’21, June 14–16, 2021, Haifa, Israel

space. Any resident blocks in it will be replaced quickly if not
re-accessed immediately. Otherwise, if it passes the check
and is trusted to be a hot block and placed into the hot set,
it can safely stay in the cache even without more accesses
for a relatively long time period. LIRS2’s advantage on hit
ratio is mainly attributed to this “check and trust” strategy.
However, this strategy has its side effect.
For a block that is accessed for the first time or has not

been accessed for a long time to be trusted, it has to first
experience three accesses (or three misses) to produce two
relatively small reuse distances. For most workloads with
access locality, once a block starts to be accessed, it likely
stays active for a while with many more accesses, which
help amortize the loss of hits during the initial check period.
However, there may be workloads with many blocks of very
few accesses in an active period. If a block has only two
accesses in the period, LRU has one miss and LIRS2 has two
misses. If it has only three accesses, LRU still has one miss,
but LIRS2 has three misses. That is, the side effect of LIRS2’s
“check and trust” strategy is avoided in the LRU algorithm.
When this side effort is significant, LIRS2 may have a miss
ratio higher than LRU, as our experiment results will reveal.

As the strategy is the main source of LIRS2’s performance
advantage, we cannot remove the side effort by changing
LIRS2’s core design principle. To this end, we propose an
adaptive LIRS2, which opportunistically switches to LRU to
remove the side effect once LRU’s advantage shows up.

We propose LIRS2-Adapt, in which both data structures of
LIRS2 (the LIRS2 queue and CoRe queue) and LRU (the LRU
stack) 1 are maintained. Essentially, LIRS2-Adapt runs the
two algorithms simultaneously, monitors their miss ratios,
and follows the replacement decisions from the one with
lower ratios in an epoch-by-epoch fashion.

In the design we need to consider the mechanism to enable
the switch and the policy to carry out the switch. A straight-
forward approach for the switch is to move all instances of
resident blocks from the LIRS2’s queues to the LRU stack
for a LIRS2-to-LRU switch or move all blocks in the LRU
stack to initialize LIRS2’s queue for an LRU-to-LIRS2 switch.
While this approach functions, it incurs a time cost higher
than O(1) during the switch. To address the issue, LIRS2-
Adapt chooses an incremental switch method. It allows hot
blocks to be non-resident in LIRS2 and blocks in the LRU
stack to be non-resident in LRU during the transition period.
These non-resident blocks become resident when they are
accessed, or exit from either of the data structures if they
are not accessed for a while. Following the accesses LIRS2-
Adapt naturally aligns itself with LRU or LIRS2, depending
1Note that LIRS2’s CoRe queue and the LRU stack in the LRU algorithm
are different. In LIRS2, the CoRe queue only stores resident cold blocks. In
LRU, its LRU stack stores all resident blocks. In all three queues/stack, block
instances are organized in the LRU order.

on which algorithm it switches to. In this way, all operations
are still of O(1) with every access. The adaptation policy is
to monitor difference between two algorithms’ miss ratios
and decide timing to switch. Likely there is performance loss
due to the switch. And frequent back-and-forth switches
may hurt more than benefit the performance. To this end,
we take a conservative approach in making a switch deci-
sion. We divide the block accesses over the time into epochs.
Each epoch contains accesses that can fill 20% of the cache.
LIRS2-Adapt monitors and compares miss ratios of LIRS2
and LRU during each epoch. If the standby algorithm beats
the currently effective one for five continuous epochs by 10
percentage points or more on miss ratio value (e.g., 25% vs.
35%), LIRS2-Adapt starts its switch to the standby one in the
next epoch. The default initial algorithm during the adaptive
execution is LIRS2.

3 EVALUATION
In this section we evaluate and compare performance of the
proposed replacement algorithms (LIRS2 and LIRS2-Adapt)
with other major algorithms, including LRU, OPT, LIRS, and
ARC. ARC is an algorithm that blends recency and frequency
in its locality measure by using two queues to separate blocks
with only one access and those with multiple accesses. In
the evaluation we use 106 week-long virtual disk traces col-
lected by CloudPhysics’s caching analytics service in produc-
tion VMware environments [32] and 4 week-long enterprise
server traces collected byMicrosoft Research Cambridge [20].
We received the traces from CloudPhysics and use the origi-
nal trace names in the presentation (w001, ..., w106, msr_proj,
msr_src1,msr_src2,msr_web1). We also use 5 I/O traces from
the UMass Trace Repository (Financial 1/2 and WebSearch
1/2/3) [3]. This is a diverse set of all real-world traces with
significant scales and that have been widely used for caching
system evaluations [4, 7, 21, 22, 33]. The block size is 16KB.

We obtained the miss ratio curves of the algorithms on the
115 traces. To present representative results, we group the
traces into four types (A, B, C, and D) according to relative
performance of LIRS, LIRS2, and LRU. In Type-A traces, LIRS2
is substantially better than LIRS. In Type-B traces, LIRS2
performs similar to LIRS, but substantially better than LRU.
In type-C traces, LIRS, LIRS2, and LRU perform similarly.
And in Type-D, LRU performs substantially better LIRS and
LIRS2. Out of the 115 traces, there are about 25, 41, 35, and
14 traces that belong to Types A, B, C, and D, respectively.
And we choose 7, 5, 4, and 4 traces from each of the four
types, respectively, to present their miss ratios in Figure 4.

3.1 Results about Traces of Type A
Let’s first examine miss ratios of the 7 Type-A traces (Fig-
ure 4a-4g). First, the improvements of LIRS2 over LIRS can



SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

0 4 8 12
Cache Size (x106 Blocks)

20

40

60

80
%

ARC
LRU
LIRS
LIRS2
OPT

(a) w021 (Type A)

0 1 2 3
Cache Size (x106 Blocks)

5

10

15

20

25

30
% ARC

LRU
LIRS
LIRS2
OPT

(b) w032 (Type A)

0 400 800
Cache Size (x103 Blocks)

5
10
15
20
25
30
35
% ARC

LRU
LIRS
LIRS2
OPT

(c) w038 (Type A)

0 800 1600 2400
Cache Size (x103 Blocks)

10

20

30

40

% ARC
LRU
LIRS
LIRS2
OPT

(d) w049 (Type A)

0 1400 2800 4200
Cache Size (x103 Blocks)

10

20

30

40

50

60

%

ARC
LRU
LIRS
LIRS2
OPT

(e) w086 (Type A)

0 160 320
Cache Size (x103 Blocks)

5

10

15

20

25
% ARC

LRU
LIRS
LIRS2
OPT

(f) w103 (Type A)

0 1 2
Cache Size (x106 Blocks)

20

40

60

80
%

ARC
LRU
LIRS
LIRS2
OPT

(g)msr_src2 (Type A)

0 8 16 24 32 40 48
Cache Size (x106 Blocks)

10

20

30

40

50

%

ARC
LRU
LIRS
LIRS2
OPT

(h) w004 (Type B)

0 8 16 24 32 40 48
Cache Size (x106 Blocks)

20

40

60

80
% ARC

LRU
LIRS
LIRS2
OPT

(i) w020 (Type B)

0 500 1000
Cache Size (x103 Blocks)

10
20
30
40
50
60
70
%

ARC
LRU
LIRS
LIRS2
OPT

(j) w099 (Type B)

0 2 5
Cache Size (x106 Blocks)

20

40

60

80
%

ARC
LRU
LIRS
LIRS2
OPT

(k)msr_web1 (Type B)

0.0 0.3 0.7 1.0
Cache Size (x103 Blocks)

20

40

60

80

% ARC
LRU
LIRS
LIRS2
OPT

(l) websearch1 (Type B)

0 50 100
Cache Size (x103 Blocks)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
% ARC

LRU
LIRS
LIRS2
OPT

(m) w006 (Type C)

0 150 300 450
Cache Size (x103 Blocks)

10

20

30

40

50

60
%

ARC
LRU
LIRS
LIRS2
OPT

(n) w059 (Type C)

0 120 240
Cache Size (x103 Blocks)

5

10

15

20

25

% ARC
LRU
LIRS
LIRS2
OPT

(o) w106 (Type C)

0 1
Cache Size (x103 Blocks)

10

20

30

40

50

% ARC
LRU
LIRS
LIRS2
OPT

(p) financial1 (Type C)

0 3 6 9 12 15 18
Cache Size (x106 Blocks)

10
20
30
40
50
60
70
% ARC

LRU
LIRS
LIRS2
OPT

(q) w046 (Type D)

0 400 800 1200
Cache Size (x103 Blocks)

10

20

30

40

50
% ARC

LRU
LIRS
LIRS2
OPT

(r) w079 (Type D)

0 2 4
Cache Size (x106 Blocks)

5
10
15
20
25
30
35
% ARC

LRU
LIRS
LIRS2
OPT

(s) w013 (Type D)

0 9 18 26
Cache Size (x106 Blocks)

10
20
30
40
50
60
70
% ARC

LRU
LIRS
LIRS2
OPT

(t)msr_src1 (Type D)
Figure 4:Miss ratio curves of selected 20 traces belonging to different types.



LIRS2: An Improved LIRS Replacement Algorithm SYSTOR ’21, June 14–16, 2021, Haifa, Israel

0 25 50
Access Distance (x106)

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

ΔRD

Δ2RD

(a) Trace w021

0 4 8 12
Cache Size (x106 Blocks)

0

5

10

15

20

25

In
-q

ue
ue

 M
iss

 R
at

io
 (%

) LIRS
LIRS2

(b) Trace w021

0 5 10
Access Distance (x106)

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

ΔRD

Δ2RD

(c) Trace w049

0 800 1600 2400
Cache Size (x103 Blocks)

0

2

4

6
In

-q
ue

ue
 M

iss
 R

at
io

 (%
) LIRS

LIRS2

(d) Trace w049

0 500 1000 1500
Access Distance (x103)

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

ΔRD

Δ2RD

(e) Trace w103

0 160 320
Cache Size (x103 Blocks)

0

1

2

3

4

In
-q

ue
ue

 M
iss

 R
at

io
 (%

) LIRS
LIRS2

(f) Trace w103
Figure 5: CDF curves for variations of reuse distance and sum of two
continuous reuse distances for selected traces ((a), (c), and (e)), and
their in-LIRS-queue and in-LIRS2-queue miss ratios ((b), (d), (f)).

be significant. For example, reductions of miss ratios are as
much as 19.1, 5.7, and 9.8 percentage points on traces w021,
w038, and msr_src2, respectively. Second, a common obser-
vation of miss ratio curve indicative of possible performance
issues is stagnant descent, that is, no or slow descent of miss
ratio curve with the increase of cache size. Examples are
LIRS on the zigzag accesses and LRU on the parallel accesses
shown in Figure 1. There are several occurrences of stagnant
descent in the LIRS curves, such as one for w021 at small
cache sizes, one for w038 at medium cache sizes, and one
for msr_src2 at a large range of cache size in the middle, as
shown in Figures 4a, 4c, and 4g. LIRS2 eliminates or amelio-
rates the issue. Third, for traces where LIRS has significantly
improved performance over LRU and ARC, LIRS2 can still fur-
ther improve its miss ratios, bringing them closer to OPT’s.
Examples include w021, w049, and msr_src2. Meanwhile, in
cases where LIRS performs worse than LRU or ARC, LIRS2
reverses the trend, as shown in Figure 4f for w103.

In Section 1, we use a hypothetical zigzag access pattern to
illustrate how LIRS may underperform with unstable reuse
distance. To show existence of the instability and its im-
pact on replacement algorithms in the real world, we plot
variations of reuse distance, denoted RD, and sum of two
consecutive reuse distances, denoted 2RD, as CDF (cumula-
tive distribution function) curves in Figures 5a, 5c, and 5e

on traces exhibiting different LIRS2’s advantage (w021, w049,
and w103, respectively). Specifically, Δ𝑅𝐷 is the difference
between continuous RDs. Δ2𝑅𝐷 is the difference between
continuous 2RDs. As shown, Δ2𝑅𝐷s are substantially smaller
than Δ𝑅𝐷 , especially on w021 and w049. Furthermore, their
difference roughly correlates with LIRS2’s performance im-
provements. For example, Δ2𝑅𝐷s are much smaller than Δ𝑅𝐷

on w021. Accordingly, LIRS2 significantly improves LIRS. In
contrast, on w103 both the differences, between Δ2𝑅𝐷 and
Δ𝑅𝐷 , and LIRS2’s miss ratio improvement over LIRS aremuch
smaller. This observation confirms existence of LIRS’s issue
with stability of its locality measure.

To further understand how the (in)stability actually com-
promises (or helps with) the performance, we measure num-
ber of times a block is mis-categorized as a cold block in LIRS
and LIRS2. Such a mis-categorization is a mis-prediction lead-
ing to a hot block to be placed in the cold set and be replaced
quickly. When its next access is a miss and occurs when
it is still in the LIRS2 queue, we know that the block has
been mis-predicted. Had we known it would be re-accessed
at a time earlier than the block at the queue’s bottom, we
would have kept it in the cache longer by categorizing it
as a hot block. The mis-categorization takes place because
the algorithm is mis-guided by its last measurement, which
is significantly different from the current one. Figures 5b,
5d, and 5f show percentage of accesses (of all accesses) cor-
responding to misses of cold blocks when they are in the
LIRS/LIRS2 queue for the three aforementioned traces. For
w021, LIRS has much more such misses (or mis-predictions)
than LIRS2. This observation is well correlated to the large
improvements made by LIRS2 over LIRS. For the other two
traces the issue of LIRS for having such misses more than
those from LISR2 is less significant. Accordingly, LIRS2’s im-
provements are smaller. Note that prediction of an actually
cold block to be a hot block also compromises performance,
as a block will stay in the cache longer and wastefully.

3.2 Results about Traces of Types B and C
In the five Type-B traces LRU and often ARC are much worse
than LIRS/LIRS2. On these traces LIRS does not show any
clear stagnant descents. This indicates that LIRS has effec-
tively exploited the locality, and leaves little room for LIRS2
for further improvement. Therefore, LIRS2 has performance
similar to LIRS. However, LRU and ARC show serious stag-
nant descents on their curves. And LIRS is sufficient to ad-
dress the issue in these workloads mainly because their reuse
distances have been stable to produce credible predictions
and it’s not necessary to use sum of two reuse distances.
For the four Type-C traces, miss ratio curves of all the

algorithms are well overlapped. This happens when a work-
load has very strong locality. Accesses of a block are highly



SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

1K
10

6K
21

1K
31

5K
42

0K
52

5K
63

0K
73

4K
83

9K
94

4K
10

49
K

11
53

K
12

58
K

Cache Size (# of Blocks)

0

20

40

60

80

100

Ac
ce

ss
 D

ist
rib

ut
io

n 
(%

)

(a) Trace w079

26
2K

65
5K

10
48

K
14

41
K

18
35

K
22

28
K

26
21

K
30

14
K

34
08

K
38

01
K

41
94

K
45

87
K

49
80

K

Cache Size (# of Blocks)

0

20

40

60

80

100

Ac
ce

ss
 D

ist
rib

ut
io

n 
(%

)

Grouplirs2
Group3+

Group3
Group2
Group1

(b) Trace w013
Figure 6: Breakdown of accesses in different groups in two traces.

clustered, or reuse distances are small (shorter than the cache
size). Any of the algorithms can easily keep a block in the
cache until it is re-accessed to produce a hit. For such work-
loads even LRU is sufficient.

3.3 Results about Traces of Type D
Figure 4 shows results for the four Type-D traces, where
LIRS/LIRS2 visibly exhibit worse performance than LRU
in some ranges of cache size. To understand impact of the
LIRS2’s check-and-trust strategy on the performance, we
breaks down accesses into groups according to their different
impacts on LRU/LIRS2’s performance. In the grouping, cold
access refers to access of a block that has not been accessed
for a long time and its history access information, if any, is
no longer recorded in the LIRS2 queue. An access sequence
of a block is defined as a sequence of its accesses starting
from a cold access to the one right before its next cold access
or its last access, denoted 𝐴1, 𝐴2, ..., 𝐴𝑘 , ..., 𝐴𝑛 . Assume the
distance between 𝐴𝑖−1 and 𝐴𝑖 is not larger than cache size
when 𝑖 ≤ 𝑘 , and the distance between 𝐴𝑘 and 𝐴𝑘+1 is larger
than the cache size. Let’s first consider the first 𝑘 accesses.
If 𝑘 = 1, both LRU and LIRS2 has a miss. But LRU wastes a
cache space for a much longer time. If 𝑛 = 2, LRU has one
miss, and LIRS2 has two misses. If 𝑘 = 3, LRU has one miss,
and LIRS2 has three misses. When 𝑘 becomes even larger,
additional accesses are all hits for both algorithms. We place
the first 𝑘 accesses (𝐴1, 𝐴2, ..., and 𝐴𝑘 ) into𝐺𝑟𝑜𝑢𝑝𝑘 for k = 1,
2, or 3. If 𝑘 > 3, the accesses are placed into 𝐺𝑟𝑜𝑢𝑝3+. Any
accesses between 𝐴𝑘+1 and 𝐴𝑛 are in𝐺𝑟𝑜𝑢𝑝𝑙𝑖𝑟𝑠2. Accesses in
𝐺𝑟𝑜𝑢𝑝𝑙𝑖𝑟𝑠2 are more likely to be hits in LIRS2 as the block
was more likely to be hot than in LRU when the accesses
more likely occur out of the LRU stack and are misses.
Figure 6 shows breakdown of the accesses in the five

groups for w079 and w013. For w079, except for very small
cache sizes, there are significant portion of the accesses be-
longing to 𝐺𝑟𝑜𝑢𝑝2 and 𝐺𝑟𝑜𝑢𝑝3, giving LRU advantage to
achieve more much hits than LIRS2. This explains why LRU
has much lower miss ratios for most cache sizes. When the
cache size becomes large, accesses in𝐺𝑟𝑜𝑢𝑝1 and𝐺𝑟𝑜𝑢𝑝𝑙𝑖𝑟𝑠2,
which are beneficial to LIRS2, increase, corresponding to
improved LIRS2’s performance shown in Figure 4r.
In contrast, the breakdown figure for w013 shows that

accesses in 𝐺𝑟𝑜𝑢𝑝1, 𝐺𝑟𝑜𝑢𝑝2, and 𝐺𝑟𝑜𝑢𝑝3 represent a sig-
nificantly less percentage than those for w079. Accesses

0 5 10 15 20 25 30
Miss ratio gaps between OPT's ratio and that of each of the Algorithms (%)

LIRS2

LIRS

ARC

LRU

Al
go

rit
hm

s

Figure 7: Miss ratio gaps between OPT’s ratio and that of an algo-
rithm under test. For each of the algorithms, 2,300 miss ratios are
collected (for each of the 115 traces on 20 cache sizes evenly dis-
tributed between 1% of the data set size and the size where the miss
ratio starts to plateau out). For each algorithm, a box plot has lines
corresponding to first quartile, median, and third quartile. Lines ex-
tending from a box indicate minimum and maximum.

in 𝐺𝑟𝑜𝑢𝑝3+ are more likely to favor LRU. And accesses in
𝐺𝑟𝑜𝑢𝑝𝑙𝑖𝑟𝑠2 are more likely to favor LIRS2. Their miss ratios
are not significantly different (shown in Figure 4s), indicat-
ing LIRS2’s check-and-trust’s side effect is not serious. With
increase of the cache size, the portion of accesses in𝐺𝑟𝑜𝑢𝑝3+
increases, and LIRS2’s performance improves.

A Bird’s-eye View As a summary, the box plots in Fig-
ure 7 show how each of the algorithm performs in compari-
son to OPT on all of the 115 traces and different cache sizes.
As shown, the lines for LIRS2’s first quartile, median, third
quartile, and maximum all indicate the miss ratios closer to
OPT’s than LIRS. LIRS2 improves LIRS’s miss ratio when
LIRS’s performance issue arises. And often LIRS performs
pretty well. Therefore, the statistical comparison doesn’t
show big improvements upon LIRS. Meanwhile, their im-
provements over ARC and LRU are much more significant.
The miss ratio plot for each of the 115 traces can be found at
https://github.com/zhongch4g/LIRS2.

3.4 Performance of LIRS2-Adapt
Accesses in𝐺𝑟𝑜𝑢𝑝2 and𝐺𝑟𝑜𝑢𝑝3 expose the weakness of the
check-and-trust strategy. This weakness can be effectively
addressed by the LRU logic in the LIRS2-Adapt. To observe its
effectiveness, we select some traces of Types A, B, and C and
all Type-D traces from Figure 4, and show their miss ratio
curves in Figure 8. In this experiment, we include DLIRS,
an algorithm designed to address the issue by dynamically
changing the allocation of cache space between cold and
hot sets in LIRS [15]. DLIRS tracks misses of cold in-queue
blocks, and proportionally increases the allocation to the
cold set to allow untrusted blocks to stay in the cache longer.
Figure 8 shows miss ratios of the algorithms. There are

several observations. First, on Type-D workloads, for which
LIRS2-Adapt is introduced, LIRS2-Adapt mostly traces the
lower of LIRS2 and LRU curves. For example, for w079 be-
fore the cache size reaches about 865K blocks, LIRS2-Adapt
performs much like LRU. And after the cache size, it per-
forms as LIRS2 when LIRS2’s miss ratios become lower. We
do notice that there are a few spots where LIRS2-Adapt does

https://github.com/zhongch4g/LIRS2


LIRS2: An Improved LIRS Replacement Algorithm SYSTOR ’21, June 14–16, 2021, Haifa, Israel

0 4 8 12
Cache Size (x106 Blocks)

20

40

60

80
%

LRU
LIRS2
DLIRS
LIRS2-Adapt
OPT

(a) w021 (Type A)

0 800 1600 2400
Cache Size (x103 Blocks)

10

20

30

40

% LRU
LIRS2
DLIRS
LIRS2-Adapt
OPT

(b) w049 (Type A)

0 500 1000
Cache Size (x103 Blocks)

10
20
30
40
50
60
70
%

LRU
LIRS2
DLIRS
LIRS2-Adapt
OPT

(c) w099 (Type B)

0 120 240 360
Cache Size (x103 Blocks)

5

10

15

20

25
% LRU

LIRS2
DLIRS
LIRS2-Adapt
OPT

(d) w106 (Type C)

0 3 6 9 12 15 18
Cache Size (x106 Blocks)

10
20
30
40
50
60
70
% LRU

LIRS2
DLIRS
LIRS2-Adapt
OPT

(e) w046 (Type D)

0 400 800 1200
Cache Size (x103 Blocks)

10

20

30

40

50% LRU
LIRS2
DLIRS
LIRS2-Adapt
OPT

(f) w079 (Type D)

0 2 4 6
Cache Size (x106 Blocks)

5
10
15
20
25
30
35
% LRU

LIRS2
DLIRS
LIRS2-Adapt
OPT

(g) w013 (Type D)

0 9 18 26
Cache Size (x106 Blocks)

10
20
30
40
50
60
70
% LRU

LIRS2
DLIRS
LIRS2-Adapt
OPT

(h)msr_src1 (Type D)
Figure 8:Miss ratio curves for evaluating LIRS2-Adapt.

not follow the better of the two, as it adopts a conservative
adaptation strategy to avoid overaction. This may lead to
lost opportunities.
Generally DLIRS performs similarly for Type-D traces,

except msr_src1, for which DLIRS is visibly worse. The major
issue with DLIRS shows on type-A traces, where its curves
are significantly drifted away towards LRU’s (see Figures 8a
and 8b). LIRS2 out-performs LIRS on these traces, indicating
that LIRS encounters highly variable reuse distances. This
causes DLIRS to detect many cold-hot block status changes,
increasing its cold-block space allocation as its response to
hold cold blocks longer in the cache. However, instead of
using a different locality measure to accurately identifying
cold blocks from hot ones, DLIRS seeks to treat cold blocks
more like hot ones, making its performance closer to LRU.

3.5 Overhead Analysis
Both LIRS2 and LIRS2-Adapt are O(1) algorithms. With only
a few instructions for updating pointers and block status
upon an access, they are as efficient as LRU.

The metadata overhead of LIRS2 and LIRS2-Adapt is mod-
erate and well affordable. As we mentioned, the number of
instances in a LIRS2 queue is capped at 8X cache size in terms
of blocks. Each instance requires 4 pointers in the linked list.
Considering maximally possible number of instances in the
queue, we use 4 bytes for each pointer. Each block has up to
two instances in the queue. Each instance contains a block
number and a few flags occupying 4 bytes. So each block
needs up to 40 bytes for the queue. The space overhead for
the CoRe queue is negligible as it is very short. In the LRU
queue, each block needs only one instance of 20 bytes long.
Assuming a 16KB block, the space cost for LIRS2 is up to 1%
and 1.1% for LIRS2 and LIRS2-Adapt, respectively. A further

reduction of this overhead is possible, as some of the simi-
larly structured algorithms have been implemented in the
CPU cache, such as RRIP [9] and Cache Bursts [16].

4 RELATEDWORKS
Caching is a fundamental technique that has been applied
in numerous scenarios to speed up data access from proces-
sor cache, block storage devices, and remote servers in data
centers for faster instruction execution, higher I/O perfor-
mance, or reduced network traffic. Arguably a replacement
algorithm is the most performance-critical component in a
caching system. While the algorithms may be customized
for their applications in different scenarios with features
such as ultra-low cost and variable caching object sizes, the
fundamental ones are those for using the memory to cache
fixed-size blocks on the disks. There are many studies, which
are directly related to this work, on these algorithms.

4.1 Block Replacement Algorithms
In the spectrum of the block replacement algorithms, LRU
and LFU represent two contrasting design principles. LRU
only considers a block’s most recent access event to char-
acterize its access pattern, while LFU uses many history
accesses attempting to receive a more stable and reliable in-
terpretation of its access behaviors. Each has its drawbacks.
LRU is too short-sighted by only considering recency, the
last access time. This locality measure is not stable and thus
not reliable to predict next access time. In contrast, LFU is
not responsive to access pattern change and often performs
poorly for dynamic workloads. Additionally, it can be too
expensive in a practical system. TinyLFU uses approximate
representation of access frequency to significantly reduce
the cost [5]. With a front-end window cache whose default



SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

size is 1% of the cache size, W-TinyLFU can additionally han-
dle the issue of access bursts on a small set of blocks. Using
its very small LRU-managed window cache and frequency-
based admission policy, W-TinyLFU shares the weakness of
LIRS2 on workloads with many blocks of a few accesses, an
issue that is addressed by LIRS2-Adapt.

To reduce responsiveness issue, frequency-based replace-
ment algorithm (FBR) is proposed to factor out too-old his-
tory accesses and give recent history a higher weight in the
calculation of frequency [26]. The MQ (Multi-Queue) algo-
rithm separates blocks of different frequencies into different
queues [35]. LRFU includes both recency and frequency in
the formulation of its locality measure [18]. These algorithms
have two major issues. One is their use of hard-to-tune and
performance-sensitive parameters, such as relative weight
between recency and frequency. Second is their often too-
high time overhead. LIRS does not have the issues. It does
not have any parameters that must be carefully tuned to
receive expected performance. It has a O(1) overhead.
Further away from LFU, algorithms were proposed to

consider only a few most recent accesses of a block in
the locality measure. Among them, LRU-K uses the Kth-
to-last access time, and chooses the block with the largest
of the times for replacement [23]. In practice, it is preferred
to let K = 2. This sounds similar to LIRS2’s locality mea-
sure 𝑇𝑙𝑖𝑟𝑠2 = 𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒1 + 𝑇𝑟𝑒𝑢𝑠𝑒2,𝑇𝑟𝑒𝑢𝑠𝑒1 + 𝑇𝑙𝑎𝑠𝑡 ). How-
ever, LRU-2’s locality measure is fundamentally different.
It is𝑚𝑎𝑥 (𝑇𝑟𝑒𝑢𝑠𝑒1 +𝑇𝑙𝑎𝑠𝑡 ), where a change of recency (𝑇𝑙𝑎𝑠𝑡 )
changes themeasurement, making the algorithm carry LRU’s
weakness. 𝑇𝑙𝑖𝑟𝑠2 doesn’t have the issue. Though LRU-2 de-
parts away from LFU by considering two recent accesses, its
time overhead is O(log N), where N is the cache size. Instead,
LIRS2 considers three recent accesses with O(1) overhead.

2Q [11] and ARC [17] also consider only the most recent
two accesses of a block, but with O(1) overhead. They use
two queues to enable the check-and-trust strategy. Their
critical issue is that the condition for passing the check is not
well calculated. They simply employ a fixed-size queue and
always compare with the size for block categorization. In
contrast, LIRS2 uses well-reasoned 𝑇𝑙𝑖𝑟𝑠2 ≤ 𝑚𝑎𝑥𝑙𝑖𝑟𝑠2 condi-
tion and uses𝑚𝑎𝑥𝑙𝑖𝑟𝑠2, which changes dynamically to reflect
currently true locality strength, as the checking condition.
LIRS2-Adapt dynamically switches between multiple al-

gorithms to receive the best miss ratios. This approach has
been employed in a few previous works. SEQ runs between
the LRU and MRU (Most Recently Used) algorithms depend-
ing on whether a pattern of sequential access of blocks is
detected [6]. DEAR detects a few predefined access patterns,
such as sequential, looping, temporally-clustered, or prob-
abilistic, and applies different algorithms on blocks of dif-
ferent access patterns [12]. UBM is similar except that it

considers file-system-level information for access pattern de-
tection [14]. In contrast, LIRS2-Adapt builds on LIRS2, which
has consistently outperformed the state-of-the-arts with only
one well-understood exception on a particular access pattern.
As this is an issue that can be effectively addressed by LRU,
LRU is employed to handle the exception.

4.2 Other Replacement Algorithms
There have been a large number of replacement algorithms
for processor cache. Among them, some recent works also
adopt the check-and-trust strategy to determine if an incom-
ing cache line is cache-friendly and cache them differently,
such as Hawkeye [8], RRIP [9], SHiP [34], and SDBP [13]. The
idea of LIRS2-Adapt’s dynamical selection from two compet-
ing algorithms was also applied in the hardware cache, such
as Dynamic Set Sampling (DSS) [24], Sampling Based Adap-
tive Replacement (SBAR) [25], and Adaptive Cache Man-
agement [30]. These algorithms are more concerned with
leveraging hardware features to customize general-purpose
replacement algorithms for very high efficiency with hard-
ware. The effectiveness of LIRS2 and its O(1) overhead can
be helpful to inspire new innovative CPU cache designs.
Recently machine-learning (ML) technique has been em-

ployed in the design of replacement algorithms, such as
Glider [28], LeCaR [31], DeepCache [19], LRB [29], and
CACHEUS [27]. A strength of using ML in the design is
that more relevant factors about a caching object can be
easily introduced into a learning framework. Though they
can be much more expensive and may not be applicable for
systems demanding high efficiency, they are more versatile.
General-purpose algorithms like LIRS2 usually only consider
temporal locality. It is an interesting topic to study how to
integrate ML techniques into it in various system scenarios.

5 CONCLUSIONS
In this paper we propose block replacement algorithms
(LIRS2 and LIRS2-Adapt) to improve the well-recognized
LIRS algorithm. The key contributions are a locality measure
covering two reuse distances for more reliable and accurate
replacement decision and its effective incorporation in re-
placement algorithms in a lightweight fashion. Results from
extensive experiments show that the algorithms can often
substantially outperform state-of-the-art algorithms.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd,
Patrick P. C. Lee, for their valuable feedback. We thank Irfan
Ahmad and CloudPhysics for supplying us with a large num-
ber of real-world I/O traces. Caleb Jiang initially suggested
the LIRS2 locality measure. This work was supported by the
US National Science Foundation under grant CCF-1815303.



LIRS2: An Improved LIRS Replacement Algorithm SYSTOR ’21, June 14–16, 2021, Haifa, Israel

REFERENCES
[1] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. 1971. Principles

of Optimal Page Replacement. J. ACM 18, 1 (Jan. 1971), 80–93. https:
//doi.org/10.1145/321623.321632

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–64. https://doi.
org/10.1145/2318857.2254766

[3] Ken Bates and Bruce McNutt. [n.d.]. Storage - UMass Trace Repository.
http://traces.cs.umass.edu/index.php/Storage/Storage.

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Im-
proving Cache Hit Rate by Maximizing Hit Density. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 389–403. https://www.usenix.
org/conference/nsdi18/presentation/beckmann

[5] Gil Einziger, Roy Friedman, and Ben Manes. 2017. TinyLFU: A Highly
Efficient Cache Admission Policy. ACM Trans. Storage 13, 4, Article 35
(Nov. 2017), 31 pages. https://doi.org/10.1145/3149371

[6] Gideon Glass and Pei Cao. 1997. Adaptive Page Replacement Based
on Memory Reference Behavior. SIGMETRICS Perform. Eval. Rev. 25, 1
(June 1997), 115–126. https://doi.org/10.1145/258623.258681

[7] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and
Raju Rangaswami. 2011. Cost Effective Storage Using Extent Based
Dynamic Tiering. In Proceedings of the 9th USENIX Conference on
File and Stroage Technologies (San Jose, California) (FAST’11). USENIX
Association, USA, 20.

[8] A. Jain and C. Lin. 2016. Back to the Future: Leveraging Belady’s
Algorithm for Improved Cache Replacement. In 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA). 78–
89.

[9] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010.
High Performance Cache Replacement Using Re-Reference Interval
Prediction (RRIP). SIGARCH Comput. Archit. News 38, 3 (June 2010),
60–71. https://doi.org/10.1145/1816038.1815971

[10] Song Jiang and Xiaodong Zhang. 2002. LIRS: An Efficient Low Inter-
Reference Recency Set Replacement Policy to Improve Buffer Cache
Performance. SIGMETRICS Perform. Eval. Rev. 30, 1 (June 2002), 31–42.
https://doi.org/10.1145/511399.511340

[11] T. Johnson and D. Shasha. 1994. 2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm. In VLDB.

[12] Jongmoo Choi, S. H. Noh, Sang Lyul Min, Eun-Yong Ha, and Yookun
Cho. 2002. Design, implementation, and performance evaluation of
a detection-based adaptive block replacement scheme. IEEE Trans.
Comput. 51, 7 (2002), 793–800.

[13] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. 2010.
Sampling Dead Block Prediction for Last-Level Caches. In Proceed-
ings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO ’43). IEEE Computer Society, USA, 175–186.
https://doi.org/10.1109/MICRO.2010.24

[14] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. 2000. A Low-Overhead
High-Performance Unified Buffer Management Scheme That Exploits
Sequential and Looping References. In Proceedings of the 4th Conference
on Symposium on Operating System Design & Implementation - Volume
4 (San Diego, California) (OSDI’00). USENIX Association, USA, Article
9, 16 pages.

[15] Cong Li. 2018. DLIRS: Improving Low Inter-Reference Recency Set
Cache Replacement Policy with Dynamics. In Proceedings of the 11th
ACM International Systems and Storage Conference (Haifa, Israel) (SYS-
TOR ’18). Association for Computing Machinery, New York, NY, USA,
59–64. https://doi.org/10.1145/3211890.3211891

[16] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. 2008.
Cache Bursts: A New Approach for Eliminating Dead Blocks and In-
creasing Cache Efficiency. In Proceedings of the 41st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 41). IEEE Com-
puter Society, USA, 222–233. https://doi.org/10.1109/MICRO.2008.
4771793

[17] NimrodMegiddo andDharmendra S.Modha. 2003. ARC: A Self-Tuning,
Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (San Francisco, CA) (FAST
’03). USENIX Association, USA, 115–130.

[18] S. Min, D. Lee, C. Kim, J. Choi, J. Kim, Y. Cho, and S. Noh. 2001. LRFU:
A Spectrum of Policies that Subsumes the Least Recently Used and
Least Frequently Used Policies. IEEE Trans. Comput. 50, 12 (dec 2001),
1352–1361. https://doi.org/10.1109/TC.2001.970573

[19] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie,
and Zhi-Li Zhang. 2018. Deepcache: A deep learning based framework
for content caching. In Proceedings of the 2018 Workshop on Network
Meets AI & ML. 48–53.

[20] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008.
Write Off-Loading: Practical Power Management for Enterprise Stor-
age. ACM Trans. Storage 4, 3, Article 10 (Nov. 2008), 23 pages.
https://doi.org/10.1145/1416944.1416949

[21] Dushyanth Narayanan, Eno Thereska, Austin Donnelly, Sameh El-
nikety, and Antony Rowstron. 2009. Migrating Server Storage to SSDs:
Analysis of Tradeoffs. In Proceedings of the 4th ACM European Con-
ference on Computer Systems (Nuremberg, Germany) (EuroSys ’09).
Association for Computing Machinery, New York, NY, USA, 145–158.
https://doi.org/10.1145/1519065.1519081

[22] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
2013. Scaling Memcache at Facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). USENIX As-
sociation, Lombard, IL, 385–398. https://www.usenix.org/conference/
nsdi13/technical-sessions/presentation/nishtala

[23] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993.
The LRU-K Page Replacement Algorithm for Database Disk Buffering.
SIGMOD Rec. 22, 2 (June 1993), 297–306. https://doi.org/10.1145/
170036.170081

[24] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and
Joel Emer. 2007. Adaptive Insertion Policies for High Performance
Caching. SIGARCH Comput. Archit. News 35, 2 (June 2007), 381–391.
https://doi.org/10.1145/1273440.1250709

[25] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N.
Patt. 2006. A Case for MLP-Aware Cache Replacement. SIGARCH
Comput. Archit. News 34, 2 (May 2006), 167–178. https://doi.org/10.
1145/1150019.1136501

[26] John T. Robinson and Murthy V. Devarakonda. 1990. Data Cache Man-
agement Using Frequency-Based Replacement. SIGMETRICS Perform.
Eval. Rev. 18, 1 (April 1990), 134–142. https://doi.org/10.1145/98460.
98523

[27] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Ran-
gaswami, Jason Liu, Ming Zhao, and Giri Narasimhan. 2021. Learning
Cache Replacement with CACHEUS. In 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX Association, 341–354.
https://www.usenix.org/conference/fast21/presentation/rodriguez

[28] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. 2019. Ap-
plying Deep Learning to the Cache Replacement Problem. In Pro-
ceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 413–425. https:
//doi.org/10.1145/3352460.3358319

https://doi.org/10.1145/321623.321632
https://doi.org/10.1145/321623.321632
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/2318857.2254766
http://traces.cs.umass.edu/index.php/Storage/Storage
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://www.usenix.org/conference/nsdi18/presentation/beckmann
https://doi.org/10.1145/3149371
https://doi.org/10.1145/258623.258681
https://doi.org/10.1145/1816038.1815971
https://doi.org/10.1145/511399.511340
https://doi.org/10.1109/MICRO.2010.24
https://doi.org/10.1145/3211890.3211891
https://doi.org/10.1109/MICRO.2008.4771793
https://doi.org/10.1109/MICRO.2008.4771793
https://doi.org/10.1109/TC.2001.970573
https://doi.org/10.1145/1416944.1416949
https://doi.org/10.1145/1519065.1519081
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://doi.org/10.1145/170036.170081
https://doi.org/10.1145/170036.170081
https://doi.org/10.1145/1273440.1250709
https://doi.org/10.1145/1150019.1136501
https://doi.org/10.1145/1150019.1136501
https://doi.org/10.1145/98460.98523
https://doi.org/10.1145/98460.98523
https://www.usenix.org/conference/fast21/presentation/rodriguez
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1145/3352460.3358319


SYSTOR ’21, June 14–16, 2021, Haifa, Israel Chen Zhong, Xingsheng Zhao, and Song Jiang

[29] Zhenyu Song, Daniel S. Berger, Kai Li, andWyatt Lloyd. 2020. Learning
Relaxed Belady for Content Distribution Network Caching. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 529–544. https:
//www.usenix.org/conference/nsdi20/presentation/song

[30] R. Subramanian, Y. Smaragdakis, and G. H. Loh. 2006. Adaptive Caches:
Effective Shaping of Cache Behavior toWorkloads. In 2006 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’06).
385–396.

[31] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Martinez, Steven
Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and Giri Narasimhan.
2018. Driving Cache Replacement with ML-based LeCaR. In 10th
USENIX Workshop on Hot Topics in Storage and File Systems (HotStor-
age 18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/vietri

[32] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. 2017. Cache Modeling and Optimization using Miniature Simu-
lations. In 2017 USENIX Annual Technical Conference (USENIX ATC 17).

USENIX Association, Santa Clara, CA, 487–498. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/waldspurger

[33] Carl A. Waldspurger, Nohhyun Park, Alexander Garthwaite, and Ir-
fan Ahmad. 2015. Efficient MRC Construction with SHARDS. In
13th USENIX Conference on File and Storage Technologies (FAST 15).
USENIX Association, Santa Clara, CA, 95–110. https://www.usenix.
org/conference/fast15/technical-sessions/presentation/waldspurger

[34] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi,
Simon C. Steely, and Joel Emer. 2011. SHiP: Signature-Based Hit
Predictor for High Performance Caching. In Proceedings of the 44th
Annual IEEE/ACM International Symposium onMicroarchitecture (Porto
Alegre, Brazil) (MICRO-44). Association for Computing Machinery,
New York, NY, USA, 430–441. https://doi.org/10.1145/2155620.2155671

[35] Yuanyuan Zhou, James Philbin, and Kai Li. 2001. The Multi-Queue
Replacement Algorithm for Second Level Buffer Caches. In Proceed-
ings of the General Track: 2001 USENIX Annual Technical Conference.
USENIX Association, USA, 91–104.

https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/hotstorage18/presentation/vietri
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/atc17/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://doi.org/10.1145/2155620.2155671

	Abstract
	1 INTRODUCTION
	2 The Design
	2.1 Block Categorization
	2.2 The O(1) Algorithm
	2.3 LIRS2's Optimization

	3 Evaluation
	3.1 Results about Traces of Type A
	3.2 Results about Traces of Types B and C
	3.3 Results about Traces of Type D
	3.4 Performance of LIRS2-Adapt
	3.5 Overhead Analysis

	4 Related Works
	4.1 Block Replacement Algorithms
	4.2 Other Replacement Algorithms

	5 Conclusions
	References

