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Abstract—In the realm of database systems, optimizing B+-
tree index performance is of paramount importance to overall
database performance. LeanStore, a high-performance OLTP
storage engine, has extensively optimized its in-memory B+-
tree component as well as its B+-tree-indexed database on the
disk. However, B+-tree’s lookup time increases linearly with the
tree height. This is especially problematic when all or part
of its lookup path is on the disk. Recently proposed learned
index technique has the potential to significantly improve the
performance of the B+-tree-based index by predicting location of
the search key, instead of the level-by-level path walk. However,
this machine-learning-model-based index has prediction errors
that require a local search within the sorted keys. When the keys
are on the disk, this search can be very expensive. The errors
increase with write requests, which makes the search increasingly
more expensive.

We propose LearnedStore, in which the learned index tech-
nique is leveraged to improve the LeanStore database while the
deterioration of learned-index’s search performance is curbed.
Instead of replacing the B+-tree index in LeanStore, Learned-
Store opportunistically employs a learned index when it offers
a performance advantage over the B+-tree index. Otherwise, it
reverts to using the B+-tree index. By seamlessly integrating the
learned index with LeanStore’s B+-tree structure, LearnedStore
takes advantage of the learned index while effectively addressing
its challenges. We have implemented LearnedStore and exten-
sively evaluated its performance. Experiment results show that
LearnedStore improves throughput by up to 2.29 times for read-
only workloads when the index and data set are all in memory.
It reduces tail latency by up to 6.84 times when the index and
data set are partially in the memory. Even when the entire index
and data set are on the disk, LearnedStore can improve startup
time by 3.05 times.

Index Terms—Learned Index Structures, Machine Learn-
ing, Indexing Techniques, Performance Optimization, key-value
database, LeanStore, B+-tree

I. INTRODUCTION

With the exponential growth of data, it has become impera-
tive for database systems to efficiently manage a large volume
of data. Databases serve as the backbone of data storage
and analysis, enabling efficient storage, organization, and
information retrieval. Indexing data structure plays a crucial
role in achieving optimal query performance of the systems.
Common database systems use tree-based data structures for
indexing their data, such as B+-tree [1] and LSM tree [2].
The index structures are critical to the system’s performance.
However, the tree-based index requires key lookup at multiple
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levels of the tree to reach the leaf node containing the search
key. As the size of the data set increases, there are more levels
in the index, and more time is spent on the index during data
access. Moreover, in a real-world database system, it is often
impractical to always keep the entire database index in the
memory due to the limited memory space. Some of the index
components, such as some less-accessed inner nodes on the
index tree, could be replaced out of the memory and be only
available on the disk. In this case, a key lookup along an
index tree path would incur disk I/O, making the search at the
excessively low disk speed.

Learned index [3], like a hash index, can predict a range
of key space where the search key can be found (a predicted
key location with a tolerable error), thereby avoiding the need
to traverse multiple levels of an index structure. Instead of
relying on a predefined hash function, a learned index learns
the mapping from keys to their positions in the array of
sorted keys (the learned index model). When the predicted
location is wrong, a local search on the sorted array within
a predetermined error is conducted. If the error is small,
this approach enables constant lookup time, similar to hash
indexes, and supports range queries.

However, the learned index model’s prediction error in-
creases with the write operations, degrading the performance
of the learned index. The model needs to be retrained so that
the newly inserted keys can be accurately predicted. A number
of updatable learned indexes, such as ALEX [4], XIndex [5],
LIPP [6], FITing-tree [7], and PGM [8], have been proposed.
However, when used for disk-resident indexes, these learned
index designs often perform worse than the B+-tree index [9].
A fundamental reason is that search with a learned index is not
deterministic. It uses a trained model to predict the location.
This prediction becomes less accurate with the change of data
set due to insert/delete operations. A misprediction leads to a
search within a local key range defined by the model’s error.
This search of on-disk data may cause multiple disk accesses
in the worst case. In contrast, the number of steps in the walk
of a B+-tree is well bounded. When the learned index is unable
to accurately locate the search key, the B+-tree index often
performs better and should be used instead.

Furthermore, when the data set receives constant insertions
and deletions, the learned model is required to be retrained to
maintain its effectiveness. The retraining has to be infrequent
as it is expensive due to its accessing the entire data set.
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The original learned index technique uses stochastic gradient
descent for learning a model, which requires multiple passes
through the data set [3]. This retraining is especially expensive
with a large on-disk data set. RadixSpline [10] simplifies the
training method by using a greedy spline generation algorithm.
However, it still requires reading the entire data set for once.
When a significant portion of the data set is on the disk, the
training time can be excessively long, significantly consuming
the disk bandwidth and leading to much increased high search
latency during the retraining period [11].

LeanStore [12], a B+-tree-based key-value database, has
been designed to optimize its in-memory index and data man-
agement, and reduce the number of disk I/O with an optimized
management of the buffer cache. In this paper, we propose
LearnedStore, which introduces the learned index technique
into LeanStore to opportunistically accelerate search on its
B+-tree index. By using the model-based index, LearnedStore
improves in-memory performance and reduces the disk I/O by
bypassing multiple levels in a tree-based index and directly
reaching the leaf node that contains the search key. In the
meantime, LearnedStore addresses the issues with the learned
index by treating the model-based search as an opportunis-
tic accelerator of the B+-tree index. By conditionally using
learned index, LearnedStore can effectively address (or avoid)
the issues with the method of relying on the learned index as
its sole index structure.

This paper makes the following contributions.
• We examine the performance improvement potentials in

terms of lookup time, tail latency, and database startup
time when using a learned index in a database in various
scenarios, including its index being all in the memory,
partially in the memory, or entirely on the disk.

• We design LearnedStore that can adapt its search dynam-
ically between learned index and the B+-tree index to
maximize the performance.

• We implement and extensively evaluate LearnedStore
with various workloads. The experiment results show that
LearnedStore has up to 2.28 times improvement for read-
only workloads. Further, the tail latency can be reduced
by 6.8 times when the index and data set are partially
in memory for a read-only workload. Experiments also
show that LearnedStore achieves 1.13 times, 1.18 times
and 1.31 times throughput improvement for 100% insert,
50% insert, and 5% insert workloads, respectively.

II. BACKGROUND AND RELATED WORK

In this section, we first describe the model structure of
learned index and how it learns the mapping function. Then we
introduce LeanStore and some of its key techniques that make
it one of the state-of-the-art B+-tree-based key-value databases
and the reason why we choose it as a baseline B+-tree database
to develop our LearnedStore system.

A. Learned Index

Learned index [3], unlike traditional index structures, learns
a function (or a model) that maps a key to its location

TABLE I: Time to iterate through the randomgen data set
(31GB, see Table II) on the disk for generating linear splines
and the deterioration rate over the single-pass in-memory time.

Time (s) Deterioration by
Single pass in memory 5
Double pass in memory 10 2x

Single pass on disk 931 186x

in a sorted array. The learned index’s model emulates the
Cumulative Distribution Function (CDF) of the data set with
some misprediction error. Recursive Model Index (RMI) [3],
a simplified version of a neural network that consists of a
hierarchy of simple linear regression models, was proposed
to remove the neural network model’s inference overhead.
However, RMI is trained through a stochastic gradient descent
algorithm, which requires multiple passes through the data
set to train the model. It also requires trial-and-error hyper-
parameter tuning and an additional error evaluation cycle to
find the maximum misprediction error of the trained model by
examining the error of all the keys in the data set.

RadixSpline [10] simplifies the model further and develops
the model as a collection of linear splines approximating the
CDF curve with some acceptable error. RadixSpline’s model
inference consists of a radix table lookup to find a set of
candidate linear splines followed with a binary search in the
candidate set to find the correct spline and finally a prediction
using the spline. Unlike RMI, RadixSpline generates a collec-
tion of linear splines after a single pass through the data set
using a greedy spline generation algorithm [13] to represent
the mapping function with a predetermined acceptable error.
Furthermore, it reduces the number of hyperparameters to just
two (the number of radix bits and maximum error) to ease the
tuning process. Although it considerably reduces the training
time of the learned index, it is still not practical for on-disk
data sets as even a single pass over the data set on the disk
is slower than that in the memory by orders of magnitude, as
revealed in our experiment results shown in Table I.

RMI and RadixSpline do not support write operations.
Some updatable learned index models, including ALEX [4],
XIndex [5], LIPP [6], FITing-tree [7], PGM [8], use delta
index or gaps in the array to support insertion. However, they
assume that all the data sets will be in the memory, and
the nodes are of variable size. Therefore, page-sized buffer
cache management in LeanStore, including its replacement
policy, cannot be directly used to manage the index nodes.
An experiment-based study has found that for on-disk data
sets these updatable learned index models are not competitive
with the B+-tree index [9].

B. LeanStore

LeanStore [12] is a B+-tree-based key-value database that
manages a B+-tree index across the memory and the disk. It
can achieve in-memory B+-tree performance when the data
set fits in the memory. A basic method for creating a B+-tree
index for a large data set involves converting nodes to disk
blocks and accessing disk blocks during the tree traversal.



Small
(8)

Medium
(256)

Big
(1024)

Value size (bytes)

0
20
40
60
80

100

Pe
rc

en
ta

ge
 o

f t
im

e 
sp

en
t

Everything 
on disk

Data set

0

25

50

75

100

(a) (b)

leaf node traversal
inner node traversal level 3
inner node traversal level 2

inner node traversal level 1
root node traversal

Fig. 1: Breakdown of LeanStore’s lookup latency in two
scenarios about the index placement: (a) all in-memory and
(b) all on-disk

It has been found that relying on the OS page cache for
loading the page in the memory is inefficient [14]. Instead,
a database system usually bypasses the file system for disk
access and has its own buffer manager for data pages in
the buffer pool. The buffer manager provides buffer search,
allocation of page frame, and page replacement functionalities.
Even though the buffer manager uses a hash table to efficiently
search the buffer frame associated with a page ID, it still adds
considerable overhead as buffer search is required at every
level of the B+-tree when it traverses from the root to the leaf
node. This substantially increases the search time.

LeanStore optimizes the in-memory B+-tree search perfor-
mance by using the pointer swizzling technique [15] that
allows efficient traversal of B+-tree nodes that have been
loaded into the buffer pool without using a buffer frame hash
table. Additionally, it optimizes its page replacement policy.
This makes LeanStore a state-of-the-art B+-tree-based key-
value database for the cases where the data set and index are
either completely or partially cached in the main memory.
Accordingly, we choose it as the base system on which
LearnedStore is developed.

III. LEARNED INDEX FOR LEANSTORE

In this section, we investigate potential performance im-
provements that can be achieved by applying the learned
index technique. This provides a guideline for the design of
LearnedStore.

In order to gauge the potential benefit of directly reaching
a leaf node with a model-based prediction, we first measure
the time spent on each of the B+-tree levels in a LeanStore’s
lookup operation. We then analyze LeanStore’s lookup latency
for the following scenarios: (a) the in-memory case, where the
entire data set can fit in the memory under different value sizes
(8, 256, or 1024 bytes); and (b) when the entire data set resides
on disk.

We generate a B+-tree of five levels by inserting 500 million
8-byte keys for small 8-byte values, 40 million 8-byte keys for
medium 256-byte values, or 20 million keys for large 1024-
byte values for the in-memory cases. For the all-on-disk case,

TABLE II: Description of data sets used

Data set Description
lineargen data set consisting of 200 million 8-byte key with a

64-byte value whose keys are generated using a linear
function

piecewise data set consisting of 200 million 8-byte key with
a 64-byte value whose keys are generated using a
number of linear function

randomgen data set consisting of a 200 million 8-byte key with a
64-byte value generated from a random distribution

amzn64 book sale popularity data from SOSD [16]. Consists
of a 200 million 8-byte key with a 64-byte value

face64 unsampled version of Facebook user ID data set from
SOSD [16]. Consist of a 200 million 8-byte key with
a 64-byte value

logn64 key sampled from logn distribution from SOSD [16].
Consist of a 200 million 8-byte key with a 64-byte
value

norm64 key sampled from norm distribution from SOSD [16].
Consist of a 200 million 8-byte key with a 64-byte
value

largerandomgen 200 million randomly generated unsigned integer keys
of size 8 bytes with randomly generated values of size
512 bytes which occupies 194 GB on disk.
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Fig. 2: Comparison of throughput of LeanStore and Learned-
Store with the largerandomgen data set. The lower graph
shows increasing throughput starting the lookup service with
a cold buffer pool.

we create a larger data set with 200 million 8-byte keys and
512-byte values (the largerandomgen data set in Table II). For
the in-memory case, we measure the average time spent on
each level of the tree when all the keys are looked up. For the
all-on-disk case, we measure the latency breakdown during a
20-second service of lookup requests, assuming that the entire
B+-tree initially resides on the disk.

The experiment results are shown in Figure 1. As shown,
over 60% of the lookup latency is spent on inner node traversal
for the in-memory case. For the all-on-disk case, 50% of the
time is spent on the inner nodes in the third level, which are
less likely to be all cached in the buffer pool.

In addition to average lookup latency, startup time and tail
latency are two additional important metrics that are critical for
real-time and mission-critical applications, where consistent
performance and availability are essential. They measure a sys-
tem’s ability to quickly resume its execution (after a restart or
recovery from a failure) and performance outliers, respectively.
LeanStore uses a buffer pool to optimize its performance.
Indexes are known to take a significant amount of memory,
and it can take a long time to load them into the buffer pool.
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Fig. 3: CDF curve of lookup latency for LeanStore and LearnedStore for (a) cold buffer pool read for 20 seconds and (b)
warm buffer pool with 1% index nodes missing.

During the startup phase or while accessing the cold index,
the database has to load the indexes from the disk to service
queries. As a result, users may experience longer waiting time
and slow system responsiveness. Specifically, we define the
startup time as the time required for the system to reach 90%
of the peak performance when the index is initially all on the
disk. To assess the startup time we prepare a data set of 200
million key-value pairs, each of 8-byte key and 512-byte value
(the largerandomgen data set described in Table II). The data
set is of size 194GB and the buffer pool is of size 100GB.
As shown in Figure 2, the startup time of LeanStore is 223
seconds. This is a long time period during which most of the
I/O bandwidth is used to warm up the buffer pool and only
very limited bandwidth is available for servicing front-end
queries. Learned index could reach the leaf nodes immediately
without waiting for the inner nodes to be loaded, thus reducing
the startup time.

LeanStore’s buffer pool is designed to cache as many
pages/nodes in the memory as possible. However, LeanStore
cannot guarantee that all the nodes are in the buffer pool.
Some inner nodes may be evicted by the background page-
replacement thread. This leads to a lookup on a B+-tree path
whose nodes are not all in the memory. Lookup on the ’bumpy’
path causes long latency as it needs to load node(s) from the
disk. While this may not happen often on a sufficiently large
memory, it does cause long tail latency and compromises user
experience. To assess its impact on the tail latency, we create
a 200 million 8-byte key with a 512-byte value data set (the
largerandomgen data set described in Table II) and experiment
with two setups. In the first setup, the buffer pool is initially
empty. We issue 20 seconds of random lookups of different
keys. As shown in Figure 3, the 99th percentile latency of
LeanStore is 1475.25 µs, which is 2.27 times of the average
latency (647.77 µs). In the second setup, we make the inner
nodes out of memory with a probability of 0.01. That is, the
buffer pool has cached almost all the index and the data set. As
shown in Figure 3, the 99th percentile latency of the LeanStore
was 119.8 µs, much higher than the average latency (6.09 µs).
Learned index can skip the bumpy path traversal and improve
the tail latency.

IV. THE DESIGN OF LEARNEDSTORE

In this section, we present LearnedStore’s design to realize
the performance improvement potential enabled by learned
index. LearnedStore uses learned index to bypass inner nodes

during index lookups. In the meantime, it keeps the existing
B+-tree index of LeanStore intact for lookups with high local
search costs in the learned index.

A. The Training Phase

Instead of predicting the location of the search key in the
sorted array [3], LearnedStore predicts the location of the B+-
tree leaf node containing the key. This is because the B+-
tree organizes key-value pairs in pages in the memory and
in blocks on the disk. As the disk is a block device, the
prediction of a search key’s location within a block does not
help with the access efficiency. More importantly, a learned
index model becomes less accurate with updates in its indexed
data. With insert/delete requests, the positions of key-value
pairs in a block may frequently change. However, the change
of a leaf node (via node split/merge) is much less frequent.
Predicting the leaf nodes helps maintain the accuracy of the
learned model for a longer time.

To this end, we use the largest key of a leaf node, which
is also the boundary key in the leaf node’s parent node, to
represent the leaf node in the learned index. This also helps
reduce training time as all the leaf node pages do not need
to be loaded in the buffer pool during the training phase. We
only need access to the parent nodes of the leaf nodes to obtain
all the maximum keys of the leaf node. As the index (except
the leaf nodes where key-value pairs are stored) is most likely
in the memory, a training phase can therefore almost avoid
disk access. To enable the training over the maximum keys,
we order and store the maximum keys in an array where each
slot of the array is mapped to a leaf node. This array is named
leaf node mapping table and is always resident in the memory.
The leaf node mapping table can be populated with keys (one
boundary key per leaf node) either directly from the leaf nodes
or from their parent nodes. Because each parent node stores
multiple (around 60-80) boundary keys together and it’s almost
always in the memory, it is more efficient to obtain keys from
the parent nodes (especially when leaf nodes are on the disk).
As shown in Table III, using boundary keys of inner nodes to
represent the leaf nodes for training reduces the training time
by about 4.5 times when the leaf nodes are in the memory
and about 62 times when they are on the disk. Therefore,
LearnedStore always uses the parent nodes to populate the
mapping table.

LearnedStore uses a list of linear spline segments to repre-
sent the CDF of the maximum keys of all the leaf nodes using



TABLE III: Training time of LearnedStore when retrieving
keys from the leaf node vs. from the boundary key of the leaf
node’s parent into the leaf node mapping table.

Training With leaf node With boundary key Improvement
In-memory 0.28 (s) 0.062 (s) 4.5 times

On-disk 915.17 (s) 14.71 (s) 62 times

the Greedy Spline Corridor algorithm [13] with a maximum
error threshold as its hyperparameter. This enables us to find
linear segments within the data set and controls the error
correction overhead using a single max error hyperparameter.
This further aids in reducing training time as we can easily
train the model on a single pass through the data set and
does not require a time-consuming hyperparameter tuning.
LearnedStore also uses a simple linear regression model on
leaf nodes to predict the location of keys within the leaf node.
In order to avoid any disk access while training the linear
regression model at the leaf node, LearnedStore only trains
the model for the leaf node resident in the buffer pool.

B. The Index Lookup

LearnedStore first tries to use the learned index to directly
reach the leaf node. To this end, it looks for the correct spline
segment for the search key with a binary search. The model
for the spline segment is then used to determine the leaf node
ID (a prediction of the target leaf node), which points to a
slot in the leaf node mapping table. Each slot stores the page
ID of a leaf node, a pointer to the page frame in the buffer
pool, and the maximum key in the leaf node. Note that the
prediction of the learned index model, which is a leaf node ID
corresponding to a slot in the leaf node mapping table, may
not be accurate. If the search key is not in the range covered
by the slot (by checking the maximum keys in this and its
previous slot), an exponential search within an error bound is
performed on the table to find the correct slot.

While the pointers in the table to the buffer pool frames can
be used to conveniently reach the page frames in the buffer
pool, keeping them up to date can be expensive. A leaf node
can be split into two leaf nodes or merge with another leaf
node. Accordingly, its pointed page frame may store different
set of keys. Furthermore, a page frame may be reclaimed for
caching another leaf node when its page is replaced out of
the memory. It’s expensive to keep monitoring the page frame
changes and conduct real-time updates of the pointers.

Our solution is to use a lazy update technique, in which
the pointers are not immediately updated. We know that the
pointers are always valid because the page frames they point
to stay in the buffer. However, these frames can be assigned
to store a different leaf node. When LearnedStore follows a
pointer to obtain a page frame, it needs to compare the page
ID associated with the pointer in the leaf node mapping table
to the page ID in the page frame. If they do not match, we
resort to the buffer frame hash table to find the page frame
in the buffer pool. As the leaf node split/merge operations are
much less frequent than key insert/delete, most of the time the
correct page frames can be quickly found via the leaf node
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mapping table without using the hash table. For queries that
can be serviced all in the memory, this short-cut access further
reduces the time of reaching the search key.

Because key-value pairs in a leaf node may be updated,
LearnedStore needs to further check if the search key is
between the smallest and the largest keys of the leaf node to
determine if LearnedStore reaches the correct leaf node. The
most likely scenario is that the leaf node is in the buffer pool
and the search key is in the range, and the learned index helps
quickly find the search key. However, there are two cases that
challenge the use of learned index. In the first case, the leaf
node is in the memory, but the search key isn’t in its range.
In this case, we can resort to the LeanStore’s B+-tree index
to carry out the lookup operation. This design choice reveals
one of the LearnedStore’s unique advantages of being a hybrid
index. In contrast, other updatable learned index designs would
have to rely on complicated and expensive strategies to handle
the consequences of model misprediction. The second case is
a more subtle one in which the leaf node is not yet in the
buffer pool. A straightforward approach is to load it from the
disk and then check if the key is in the range. However, if the
key is not in the range, a wrong leaf node would be loaded and
an unnecessary and costly I/O operation was conducted. The
impact of loading a wrong leaf node is too high on the lookup
performance. To address this issue, LearnedStore retains the
largest and smallest keys of a leaf node evicted to the disk in
memory. This metadata is used to promptly verify whether the
search key falls within this range, and the B+-tree is employed
if the key is not in the range. As the B+-tree index always
leads the lookup to the correct leaf node, there won’t be any
unnecessary I/O. The pointer in the leaf node mapping table
is updated if the learned index predicts the correct leaf node
and it is loaded from the disk.

LearnedStore uses the leaf node’s simple linear regression
model to predict the location of the key within the leaf node.
Exponential search is used to find the correct position of the
key if the initial prediction is incorrect.

C. Page Eviction

LeanStore uses a page eviction algorithm. Rather than
immediately evicting the buffer frame from the memory, the
page is instead moved to the cooling queue (from the HOT



state to the COOLING state), as shown in Figure 4. This
allows the buffer pool to maintain a higher hit rate, as the
page can still be accessed from the memory. Once a page has
been in the cooling queue for a certain amount of time, it
can then be safely evicted from the buffer pool. This process
reduces the overhead of the page eviction process by allowing
pages to remain in memory for a longer period of time and
decreasing the frequency of page evictions, which can be
resource-intensive and time-consuming.

LeanStore cannot load the leaf node directly without loading
the parent node as every node/page in the buffer pool must
have a single owning pointer (swip) in the buffer pool. This
is a major hurdle for LearnedStore as it prevents it from
using its learned index to reach and load the leaf node.
Therefore, LearnedStore modifies the page eviction algorithm
to track nodes/pages that do not have parents loaded in the
buffer pool and designate them as in the "UNLINKED" state.
Those with their parent nodes in the buffer pool are in the
"LINKED" state. Similar to LeanStore, recently loaded nodes
are kept in the HOT state, and a certain percentage of the HOT
nodes/pages are transferred to the COOLING state. However,
LearnedStore independently tracks whether the parent node
is loaded and whether a swip needs to be unswizzled (swip
associated with a page ID) using a separate state. Moreover,
the pages in the UNLINKED state do not require the swip
in the parent node to be unswizzled and thus can be more
efficiently evicted to the disk.

D. Serving Write Requests

Serving a write request starts with an index lookup to find
the correct leaf node as just described. Insertion/deletion of a
key-value pair into a leaf node is the same as that of LeanStore.
However, when insertion/deletion causes leaf node split/merge,
it not only causes adjustment of the B+-tree index but also
leads to increasingly more mispredictions for the learned index
model. LearnedStore uses two background threads to address
the issue. One retrains the learned index model used for leaf
node prediction, while the other trains the linear regression
model within individual leaf nodes. LearnedStore tracks the
number of leaf node mispredictions and the number of leaf
node splits/merges. It computes the ratio of the two numbers
each time when the learned index is used. The ratio quantifies
the impact of leaf node splits/merges on the model prediction
accuracy. When the ratio is greater than a misprediction
tolerance threshold, the background threads are activated for
retaining.

V. EVALUATION

To understand the performance of LearnedStore, we first
evaluate it with a read-only workload and then with a workload
with writes. We randomize the sequence in which the keys
are read or written so that the measurement does not overfit
a specific access pattern. We use various synthetic and real-
world data sets for the experiments, as shown in Table II. We
use Intel Xeon CPU E5-2683 v4 with 220 GB memory and
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Fig. 5: Lookup throughput of LeanStore and LearnedStore for
the in-memory case

458 GB SATA SSD, with the execution pinned to a specific
NUMA node, to measure the performance metrics.

A. Read-only Workload

As described in Section III, we evaluate the read-only
throughput in three cases: when the index and data set are
entirely in the memory; partially in memory and partially on
the disk, or entirely on the disk. The three different scenarios
have different numbers of disk access during a read-only
lookup and thus different performance results.

1) The All-in-memory Case: We run LeanStore and
LearnedStore under various data sets that can fit in a 100GB
buffer pool to measure the throughput for the in-memory
case. As shown in Figure 5, LearnedStore achieves up to 2.29
times throughput improvement for the lineargen data set which
consists of a 200 million 8-byte key with a 512-byte value,
as described in Table II, while the lowest improvement (1.25
times) is seen in face64 [16]. The performance improvements
are almost proportional to the accuracy of the model’s predic-
tions. Among the data sets, lineargen is the easiest to learn
for a highly accurate model and hence produces the highest
performance improvement.

2) The Case of Partially in Memory and Partially on the
Disk: To assess the LearnedStore’s performance when the
data set is large enough to be only partially in the memory,
we assume that a tree node could be out of memory with a
probability of 1% and the system experiences a sequence of
reads with a hot buffer pool, as described in Section III. We
use the rangdomgen data set in Table II with a 200 million
KV pairs (8-byte key and a 64-byte) to measure the latency
of each lookup when the buffer pool has cached almost all
the pages. We assume that the system experiences a 300-
second burst of random lookup of existing keys. As shown
in Figure 3, the 99th percentile latencies are 119.81µs and
17.5µs for LeanStore and LearnedStores, respectively. Thus,
our approach was able to improve the 99 percentile latency by
6.84 times. Meanwhile, the average latency of LearnedStore
is measured to be 2.03µs, which is 2.99 times LearnedStore’s
average latency of 6.09µs, as shown in Figure 6.

These results show that with only 1% of nodes out of
memory, the 99th percentile tail latency is way higher the
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Fig. 6: Average and tail latency of LeanStore and LearnedStore
under the read workload when (a) the data set and index are
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TABLE IV: Throughput of LeanStore and LearnedStore for
the write workload

Experiment LeanStore (MOPS/s) LearnedStore (MOPS/s) Improvement
100% Write 0.6397 0.7273 1.13 times

YCSB-A 0.7374 0.8760 1.18 times
YCSB-B 0.9035 1.1838 1.31 times

average latency. LearnedStore can avoid almost all the non-
leaf-node disk accesses and thus deliver more consistent
performance. In the case, the number of disk access that can
be saved determines the amount of improvement of the tail
latency by LearnedStore.

3) The On-disk Case: To demonstrate the performance of
LearnedStore when the data set and its index are initially on
the disk, we use the largerandomgen data set with 200 million
KV pairs (8-byte key and a 512-byte value) to measure the
throughput and latency of the LeanStore and LearnedStore
starting with a cold buffer pool of 100 GB.

LearnedStore attempts to directly reach the leaf node, avoid-
ing the need to load inner nodes. This significantly reduces
the startup time and improves the system’s overall perfor-
mance. As shown in Figure 2, the time at which LearnedStore
first achieves 90% of its maximum throughput is around 73
seconds, while the time at which LeanStore achieves 90%
of its maximum throughput is around 223 seconds. That is,
LearnedStore reduces the startup time by 3.05 times.

We also measure the latency of each lookup in a workload
of a 20-second random lookup of existing keys on the disk. As
shown in Figure 3, the 99th percentile latency of the LeanStore
is 1475.25µs while LearnedStore’s is 577.02µs. LearnedStore
improves the 99th percentile latency by 2.55 times. Mean-
while, the average latency of the LeanStore is 647.77µs, while
the average latency of LearnedStore is 297.11µs, which is 2.18
times the average latency of the LeanStore (as illustrated in
Figure 6).

The results indicate that LearnedStore can efficiently handle
lookup requests without loading the inner nodes. The high
startup time of LeanStore demonstrates that the number of
inner nodes that are required to be loaded can be significant
and becomes a major hurdle for achieving high throughput
when a relatively cold index is being accessed.

B. Workload with Writes

We further evaluate LearnedStore when it is subjected to
100% write workload and then on a mixed workload with
50% write (YCSB-A [17]) and 5% write (YCSB-B [17]).
We start with a B+-tree consisting of 100 million randomly
generated KV pairs (4-byte keys and 64-byte values). Then,
we experiment with the mixed workloads until another 100
million randomly generated keys written.

As shown in Figure 7 and Table IV, LearnedStore achieves
1.13 times improvement for 100% insert, 1.18 times improve-
ment for YCSB-A workload, and 1.31 times improvement for
YCSB-B workload. The experiment shows that by reaching
directly the leaf nodes during the write workload, the speed
of write operations can be substantially increased. With more
intensive writes the improvement becomes smaller as more
frequent background model retraining is required. However,
even with the 100%-write workload, there is still 13% im-
provement. This is because most writes do not cause any
structural changes in the index. As the model is built on the
leaf nodes, rather than on individual keys, the impact of writes
on the model prediction accuracy is alleviated.

VI. MORE RELATED WORK

There have been many works that apply the learned index
technique to accelerate data search. Bourbon [18] uses learned
indexes to accelerate the LSM-tree-based KV store [19]. In
particular, Bourbon accelerates the KV database Wisckey [20]
that organizes the data in the sorted order instead of B+-tree.
It modifies the immutable SSTable Index of BigTable [21] to
use a simple linear regression model with model-based writes
so that the model can accurately predict the correct block.

AULID [22] and FILM [23] explore the use of learned index
instead of B+-tree-based index in the disk-resident database.
AULID proposes a learned index-based index structure as an
alternative to the B+-tree. However, AULID assumes that all
data is on the disk and does not consider a buffer pool in
its design. FILM also replaces the B+-tree index with the
learned index that is designed for append-only workloads
but supports out-of-order writes in the leaf nodes. Unlike
LearnedStore which has a fixed size leaf node equal to the
block size of the disk, the leaf node of FILM is of variable
size. FILM’s buffer manager maintains an LRU list over all
the existing records rather than leaf pages and evicts key-value
pairs instead of leaf nodes. Thus, FILM’s buffer manager has
more implementation overhead. Llaveshi et al. propose to use
machine learning model to accelerate B+-tree traversal [24].
However, its model-based prediction is limited to selection of a
child node in the next level, rather than directly a leaf node. It
also assumes that the data set is all in the memory. Therefore,
its performance improvement potential is very limited.

VII. CONCLUSIONS

This paper explores the performance potential of using
the learned index technique to accelerate disk-based B+-
tree-indexed key-value databases. Our investigation revealed
that the most time-consuming aspect of the lookup operation
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Fig. 7: Performance of LeanStore and LearnedStore with the write workload

occurs when traversing inner nodes, particularly when some
of the B+-tree nodes are not in the memory, whereas disk
I/O becomes the primary bottleneck. We designed and imple-
mented LearnedStore on top of a high-performance B+-tree-
based database, LeanStore. Instead of using learned index to
replace the B+-tree index, LearnedStore adds learned index as
an accelerator to the B+-tree index. In this way, the B+-tree
index becomes faster and the shortcomings of learned index
with index updates can be overcome by the B+-tree index.
Our experiments demonstrate that LearnedStore can yield an
impressive improvement of up to 2.29 times in scenarios
where the data set resides in the memory while delivering
a remarkable 6.84 times reduction in tail latency for data
sets that do not fit in the memory. Further, we introduced
an auto-training method for LearnedStore to have consistent
performance improvements even with write workloads.
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