SAKER: A Software Accelerated Key-value Service via
the NVMe Interface

Chen Zhong
University of Texas at Arlington
chen.zhong@mavs.uta.edu

Abstract

The NVMe Key Value (NVMe-KV) Command Set has been
standardized to enable access to an NVMe device with a key
rather than a block address and make an NVMe device a KV
service provider. This new interface opens an exciting op-
portunity of offloading extensive data management chores
to an external KV device and streamlining the KV-based
data processing at the host. However, the interface itself
may become a major performance bottleneck with small
KV access and make the technology hard to be deployed in
diverse application scenarios. In this paper we proposed a
software-based facility, named SAKER, at the host side to re-
move or alleviate the performance bottleneck at the interface.
SAKER, which was prototyped in an NVMe-KV SSD emula-
tor, demonstrates that it can effectively keep the NVMe-KV
interface from becoming the performance bottleneck even
with small KV requests in most workloads.

CCS Concepts: « Information systems — Distributed stor-
age.

Keywords: NVMe-KV, Key-value Store,

1 Introduction

Enterprise storage is a multi-trillion-dollar market with fierce
competition among vendors. Having a standardized storage
interface is the key to establishing and growing the market.
For example, SCSI and NVMe are the standards for block
interfaces, NFS and SMB are the standards for POSIX file
interfaces. Storage vendors are willing to compete at a level
higher up in the storage stack in order to offer more value and
differentiation. Key-value (KV) stores, as a data management
service, have become an indispensable storage infrastructure
on which various applications can be developed. For example,
many DBMSes, such as MySQL [11] and BigTable [2], use
a KV store as their storage backend. However, without a
set standard for KV store interface, storage vendors cannot
provide KV service to upper layers and monetize it.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

SYSTOR 25, Virtual, Israel

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2119-9/2025/09
https://doi.org/10.1145/3757347.3759143

Wenguang Wang
Broadcom Inc.
wenguang.wang@broadcom.com

Song Jiang
University of Texas at Arlington
song.jiang@uta.edu

Furthermore, if a highly performant standard interface for
KV service is introduced, developers can focus on business
logic above the KV layer to reduce development time. In
the meantime, storage vendors can compete by offering the
standard KV service instead of the primitive block storage
service. When storage vendors can optimize the full stack
of KV service, better designs may emerge to provide more
cost-effective and faster service on top of it. Recently, the
NVMe Key Value (NVMe-KV) Command Set was standard-
ized by the NVM Express Work Group, which specifies a
common set of KV access commands including read, write,
and delete keys [23]. Samsung’s KV-SSD that maintains a KV
store within the SSD with a KV access interface has become
available. With the emergence of the standard and increas-
ing support from vendors, it’s expected that more NVMe
KV-interfaced SSDs, storage appliances, and disaggregated
storage services will appear. Because NVMe can be a virtual
device running in virtual machines, or as the NVMe initiator
connecting to a remote NVMe target via the NVMe-over-
Fabric (NVMe-oF) protocol, any traditional disk array vendor
can adopt either virtual NVMe KV interface or NVMe KV via
NVMe-oF and compete in this emerging and bigger market.

However, even with its clear technological and economic
advantages, the success of the NVMe KV storage hinges on
whether it can provide performance competitive to that of
the KV store on the host. To help reveal the performance gap
between an NVMe-based KV SSD and a local on-host KV
store, we experimented with KV writes of different sizes to
an NVMe SSD emulator [9]. The emulator can be configured
with different sets of performance specs. In particular, we
configured three SSDs, each representing a different speed
class (high, medium, and low). Their key performance specs
are shown in Figure 2, which are taken from the PCle 3.0 [16],
4.0 [17], and 5.0 18] SSDs, respectively. In the service of write
requests, the hash-table-based KV store writes its received
KV items into an on-flash log once an in-memory buffer block
is filled. Keys on the log are indexed by an in-memory hash
table. Figure 1 shows the throughput of a million random
write requests to the KV store running on the host server
(HostKV for short) or one that resides in an SSD disk (DiskKV
for short). The key size is 16 bytes. The value size varies from
16B to 4KB. With a small value (16B), HostKV achieves over
5.5x higher throughput than DiskKV. The performance gap
reduces with larger value sizes. However, the faster an SSD
is, the smaller the reduction is. For example, for the value

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3757347.3759143

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

>[“DiskKV Low —¢-DiskKV Mid =DiskKV High
7 HostKV Low =g HostKV Mid £> HostKV High

=
5}
2

Low Mid High
R lat. (us) 40 22 12
Rbw(GiB) | 35 7 14
W lat. (us) 60 25 13
Wbw(GiB) | 25 55 12

- o
gy

"
<

Throughput (KOPS)

._.
3
./
|
j(

16 64 256 1024 2048 4096
Value Size (bytes)

Figure 1. Low, Mid and Figure 2. Read and Write of
High speed NVMe SSDs three types of SSDs.

size of 256B, the gap with the low-speed SSD is almost closed.
However, the gap with the high-speed SSD is still over 2X.

The significant performance gaps suggest that the over-
head of the NVMe interface can be largely exposed on the
critical path of serving small requests and becomes a per-
formance bottleneck. With performance gaps at this scale,
the vision and practice of offloading KV store behind the
NVMe interface and making it a decoupled service would be
foiled as few can trade so much performance loss for archi-
tectural advantages. The issue is genuine and widespread as
small KVs are common in various production workloads. For
example, Facebook had reported that in its Memcached KV
pool dedicated for storing user-account statuses, all values
are of 2 bytes. In its general-purpose pool, almost 40% of
the total requests are for values no more than 11 bytes [1].
In a replicated pool, the mean value size is 66 bytes [12]. In
Twitter’s KV workloads, each tweet under compression has
only 362 bytes with only 46 bytes of text as the value [5].
The issue is further aggravated when the KV store itself be-
comes increasingly fast with the increase of SSD speed and
employment of new devices such as persistent memory.

To address the issue and pave the road to effectively of-
floading the KV-store as an independent service via NVMe,
we need to minimize the number of small requests. Accord-
ingly, we propose SAKER (Software Accelerated Key-value
sERvice), a software framework that facilitates offloading
a KV store off the host and behind the NVMe interface
with minimal performance loss even with frequent small
requests. SAKER is designed as a lightweight software layer
that requires no hardware modifications, works with stan-
dard NVMe-KV interfaces, and can accelerate any KV-SSD.
While SAKER uses two conventional techniques (batching
small writes in a write buffer and serving small read requests
from a read cache on the host side) it addresses some unique
challenges, including lock contention and user-directed data
persistency (sync) at the write buffer, and work concurrency
in the KV SSD. The novelty of this work lies in its trans-
parency and generality: it enables an efficient NVMe KV
interface without requiring application modifications or re-
stricting its benefits to specific applications.

2 Background and Related Work

The newly ratified NVMe-KV Command Set has been high-
lighted with benefits such as removing a translation layer,

Chen Zhong, Wenguang Wang, and Song Jiang

support of computational storage, removing space provision-
ing overhead, and consistent key space across multiple de-
vices [10]. NVM Express, or NVMe, was proposed to extend
the PCle communication protocol for external high-speed
non-volatile memory devices, such as SSDs, and to replace
traditional SATA and SCSI interfaces for block storage de-
vices. More recently, the NVMe Command Set Specifications
further support new features introduced in the storage de-
vices such as ZNS [13], FDP [4], and key value store. These
supports make the capabilities in an SSD directly available to
the host software. Moreover, NVMe commands can also be
sent over the network with NVMe-over-Fabric (NVMe-oF),
which allows NVMe KV service to be the target of NVMe-oF.
While direct access of capabilities in a (remote) device sim-
plifies the operation logic and reduces software overhead at
the host, it exposes the potential performance risk on the
path between the service requester and the service provider.

There have been some studies on KV SSDs. However, few
directly address the interface overhead issue. One such ap-
proach introduces compound commands and ask program-
mers to use them to aggregate small KV requests into one
command [8]. Apparently, it’s not an ideal option requiring
aprogram’s I/O operations to be restructured. Another work
for developing a KV SSD simply assumes 4KB values to amor-
tize the overhead [7]. While there are other works proposed
to optimize KV SSDs, their goals differ significantly from
addressing interface overhead. KAML [6] and KV-CSD [14],
for example, offload substantial functionality to the storage
device. KAML offers native transactional support with fine-
grained locking through custom hardware and includes a
host-side cache. But its primary focus is on providing trans-
actional semantics. KV-CSD adopts a computational storage
model by embedding an LSM-tree-based KV store on an
ARM SoC within the SSD, fundamentally altering the stor-
age architecture. Neither conforms to standardized interfaces.
Dotori [3], on the other hand, addresses the performance
gap between KV SSDs and block SSDs by proposing a novel
B+-tree index, the OAK-tree, tailored for KV SSDs. While
Dotori incorporates host-side buffering through an index
update buffer and a KV cache, these components are tightly
coupled with its indexing scheme and specifically designed
for its out-of-order, append-only structure. As such, Dotori
functions as a full-fledged key-value store on the host rather
than a general-purpose acceleration layer for applications.
By maintaining buffer/cache on the host, Dotori improves
the KV store’s performance. However, its primary motivation
is not to improve KVSSD performance, but rather to enhance
KVSSD functionality and better leverage its capabilities.

A recent work, ByteExpress, identifies page-based DMA
data copying as a major source of inefficiency in the NVMe
interface for small data transfers [15]. Specifically, data trans-
fer over PCle between host memory and device DRAM oc-
curs in units of 4KB page. For small KV items, this leads

SAKER: A Software Accelerated Key-value Service via the NVMe Interface

to significant transfer amplification, contributing to the in-
terface bottleneck. ByteExpress addresses this by enabling
fine-grained data delivery over PCle: it embeds data directly
within the NVMe request by appending 64-byte submission
queue entries to the NVMe command. While this technique
improves small write performance, its additional overhead
of handling multiple queue entries can offset the gain, espe-
cially when transferring moderately large data items.

Compared to these approaches that require custom hard-
ware, complete application restructuring, or new protocol
implementation, SAKER offers a lightweight software layer
that specifically targets NVMe-KV interface overhead. It
provides transparent acceleration for both read and write re-
quests—regardless of data size—without requiring intrusive
changes to hardware or application logic.

To understand the impact of the NVMe-KV interface on
the service path, we need an NVMe SSD device and the abil-
ity to flexibly configure its parameters and features. However,
at this early stage of the NVM-KV standard, few NVMe-KV-
based storage devices available for the investigation. Fur-
thermore, this study requires exploring the design space in
the SSD extensively. Therefore, we choose to use an NMVe
SSD emulator (NVMeVirt [9]). NVMeVirt is implemented
on top of the PCle device emulation. Its emulated device
presents itself as real to the rest of the OS and other devices.
The host can set PCI’s control block and place operations
in the NVMe queues to carry out NVMe operations. Our
implementation leverages the user-level SPDK NVMe driver
to access the device directly, bypassing the kernel. Conse-
quently, SAKER’s host-side software layer is architecturally
designed to be portable and fully compatible “as-is” with
any real NVMe-KV SSD that conforms to the standardized
NVMe-KV Command Set. The NVMe message queues in the
driver are the primary mechanism to exchange requests and
results. There are two types of queues: submission queue
and completion queue. Each submission queue is paired with
a completion queue, forming a queue pair.

3 The Design

There are two objectives in the design. One is to port real-
world KV stores into the NVMe KV SSD emulator to re-
veal performance implications of the NVMe KV interface on
next-generation KV SSDs. The second is to propose efficient
methods to prevent the NVMe interface from becoming a
performance bottleneck in access to NVMe KV SSDs.

3.1 The System Architecture

There are two architectures considered in this study, which
are the HostKV and DiskKYV, as illustrated in Figure 3. HostKV
is the currently dominant KV store structure, where KV store
runs in the application context without NVMe involvement.
Only requests on data blocks are sent to the NVMe disk.
However, in DiskKV, the application is decoupled from the

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

KV store with an NVMe KV interface between the two. To re-
duce small requests to reach the SPDK NVMe driver queues,
SAKER’s buffer cache is placed between the applications
and the driver. In the NVMeVirt emulated SSD, a dispatcher
thread retrieves commands from submission queues, deter-
mines its target completion time according to a media access
performance model, and delivers them to one of the FIFO
I/O queues in a round-robin manner (Figure 3). There is an
I/O thread dedicated to each I/O queue. The I/O thread is
responsible for retrieving the commands from its I/O queue
and executing them in the KV store on the device. Compared
with the KV store in HostKV, the KV store in DiskKV doesn’t
directly receive requests from the application threads. In-
stead, it receives requests from the I/O threads in the device.

3.2 KV Stores in an in-Kernel Emulator

The NVMeVirt KV SSD emulator [9] is a Linux kernel mod-
ule in which a hash-table-based KV store is implemented to
organize the KV items on the flash and index them in the
memory. However, this implementation only provides a prim-
itive KV store that doesn’t meet requirements of the major
use scenarios for this study. For example, many applications
use range queries, which cannot be efficiently supported by
hash-table-based KV stores. As the KV store resides on a
block device, sophisticated space management is required
to accommodate variably-sized values with minimal write
amplification. Many KV stores have been developed with ex-
tensive optimizations, such as RocksDB. To understand the
impact of state-of-the-art KV stores on the NVMe interface,
we port more KV stores into the emulator.

There are two challenges in the porting. One is that most
KV stores are developed as user-level applications relying
on a file system to manage disk space. Apparently, a full
file system is not expected to run within a storage device
(though its data structures may reside there), which usually
provides a block or key address space, rather than a hierarchy
of directories and files. Second, the source code of a KV store
application usually has dependencies on many user-level
libraries. To address these issues, we reposition NVMeVirt
into the user level and accordingly support access of the
emulated device via an SPDK user-level NVMe driver. To
facilitate disk space management, a file system is needed
between a KV store and the SSD medium. However, we do
not assume a full-fledged OS and its file system running in the
SSD. Instead, we use a simplified in-memory file system [20]
as the store’s underlying file system. For a fair comparison,
we also use this file system for HostKV in the experiments.
It should be noted that “in-memory” means the data are
stored in memory; however, we also write the data the disk
emulator to simulate the flash write cost.

In addition to a hash-based KV store and RocksDB, we
ported a COW-friendly B-tree-based KV store [21] to the
emulator. Meanwhile, for comparison, they are also imple-
mented at the host and access the NVMeVirt-emulated disk

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

Application Threads Application Threads
308

BB JReadCage——————\ H

1
[KV Store API] [SNIA KV API g |
S 1
SAKER i , 1
KV Store | T T LRU shard #1 & !
1
NVMo KV Commands ! Write Buffer \
v »
ice Dri | =>[Keya] 1
NVMe KV Device Driver ' T H
! t i (ke ST} Koy 5T > 1
VMo lock Comman F | [Bucketn} o KeyO - Ker [] 1
fe Block Commands L \
1 -mm
KV Devi ¢ [
12 1 evice Dispatcher 1 roquesta
NVMe Block Device Driver \
|
|
1
/0 Thréad § o Thread§ o Thread; [}
#1 2 #2 #N [}
| KV Store ¥ b
[_Index__| Buffer Cache]
Block Device Buffer Cache | | \5iructured Values #1 Structured Values #21
[FileSystem | 1 I
['
HostKV DiskKV

Figure 3. The HostKV and DiskKV architectures

via its NVMe block interface. For each of these KV stores,
both its DiskKV and HostKV implementations use SPDK
user-level driver, NVMe interface, and the same set of per-
formance parameters in the emulation for a fair comparison.

3.3 SAKER’s Write Buffer at the Host

SAKER is designed as a software support to close the po-
tential performance gap between HostKV and DiskKV due
to small requests across the NVMe KV interface. The root
cause of the gap is that the operational cost at the NVMe
KV interface cannot be amortized with a small request. In
contrast, the NVMe block interface in the HostKV enforces a
large minimal access unit (e.g., 4KB), amortizing the cost. To
address this, SAKER has two methods: (1) making write re-
quests large enough with a write-back buffer and (2) serving
read requests in a cache before they cross the interface.

A KV store has its in-memory buffer cache. Some KV stores
set up a relatively large write buffer. For example, LSM-tree-
based stores, such as RocksDB, use the buffer (MemTable) to
generate on-disk SSTable, which is often of tens of megabytes.
For the B-tree-based KV store, its write-back buffer is to
reduce the write amplification on the block device. A large
buffer is needed to accommodate random write workloads.
SAKER additionally sets up a write-back buffer at the host
side. The purpose is to collect write requests and batch them
into a large one. For this purpose, SAKER’s buffer is relatively
small. However, its operations are highly latency-sensitive.
Without a careful design, its overhead may overtake the cost
at the NVMe interface, which would defeat the purpose of
improving the interface’s efficiency.

A major source of performance loss in the design is lock
contention. To this end, we collect multiple write requests
into a write request container. The container is considered
full when the number of its KV requests reaches a batching
limit, the total request size reaches the container’s capacity,
which is 4KB, or a sync command is received, whichever
comes first. There are two potential lock-contention sce-
narios. One is that multiple threads simultaneously place
their write requests to a container. The other is that multiple
threads simultaneously send their commands to the same

Chen Zhong, Wenguang Wang, and Song Jiang

SPDK’s submission queue. Both scenarios require serializing
access to either of the data structures. To avoid this per-
formance loss, SAKER dedicates a request container and a
SPDK queue pair to an application thread. When a container
is full, SAKER assembles its requests into one write NVMe
KV command. All its constituent requests are packed into a
structured value, which is the value of the command.

When multiple commands from the same thread are placed
in a submission queue pending for service, the request buffer-
ing and batching strategy essentially enables asynchronous
writes. For high performance, SAKER temporarily leaves the
data in the volatile memory. An application thread want-
ing its data to be immediately persisted can issue a sync
command to make all its currently pending writes in the
container and submission queue be serviced before an ac-
knowledgment is returned. This is the same design choice
adopted by most file systems on their buffer cache.

All the KV data in the pending write requests are visible
to the following read requests. If there are multiple writes
about the same key, SAKER returns the latest one. We use a
hash table to organize the locations of the write requests in
the containers and the structured values associated with the
pending commands in the submission queues (see "DiskKV"
in Figure 3). When a thread sends a new write request or
an NVMe command is completed, the hash table needs to
be updated. To minimize the lock contention at the hash
table shared by all threads, SAKER sets up a lock for each
hash bucket. As the number of buckets is much larger than
the thread count, a read request can access the values in the
write buffer with little lock contention. By using a hash table,
range queries cannot be efficiently conducted. If a range
query is a synchronous one, the application thread needs to
issue a sync command before the query. Otherwise, the data
is not included in the service of the range query.

With the addition of a host-side write buffer, the KV-
serving stack includes two separate buffering layers for write
requests. While this may seem redundant, it is both neces-
sary and poses little concern for space efficiency. First, the
two buffers serve distinct purposes: SAKER’s host-side buffer
batches small NVMe-KV commands to amortize interface
overhead, whereas the device-side buffer, managed by an
offloaded KV store (e.g., RocksDB’s MemTable), organizes
data into larger, sequential write structures (e.g., SSTables)
to optimize flash storage and minimize write amplification.
Second, the host-side buffer is much smaller—typically a
few megabytes compared to hundreds of megabytes for the
device-side buffer—making any redundancy between them
negligible in terms of space consumption.

3.4 SAKER’s Read Cache at the Host

Different from the write buffer, the read cache needs a large
space to capture a likely large working set. A KV store usu-
ally maintains a read cache to minimize access to the block

SAKER: A Software Accelerated Key-value Service via the NVMe Interface

Batch Variation 10 Variation

1.0 - s] | o 9]

58% et

<]

* HostkV HostKV 4‘7;

= DiskKV (X 1) -5~ DiskKV (10 1) [

- DiskKV (X 2) -©- Diskkv (102) |G

= DiskKV (X 8) DiskKV (10 4) | @©

o DiskKV (X 64) -&- Diskkv (l08) | T

1%} T T T

e
©

€ g

5 8| {B—8—= S

5 ?

& &

e -
9]

g 104 BB —-B | {———a—e—b|

c G—e—6—o— o |5

(e} =

= ("]

0.5 &

g

|_

A6 oM 156 XO'LB« 'LQD‘% Aggb 46 N 156 \Q’Lb‘ 105‘% A096

Value Size (Bytes)

Figure 4. Normalized write throughput of Hash-store, LSM-
store, and Tree-store on HostKV and DiskKV with different
batch sizes (the left column of graphs, where (X n) indicates
batch size n) and I/O thread counts (the right column of
graphs, where (IO k) indicates number of I/O threads k when
the batch size is 4) under random writes. Throughput is
normalized to its that with HostKV.

device. SAKER needs a read cache at the host side to mini-
mize (small) KV read requests crossing the NVMe interface.
When SAKER services a read request from its cache, it also
eliminates a read from the disk medium. Therefore, the read
cache of the KV store can be reduced or even removed. In
other words, the cache is repositioned to the host side and
managed by SAKER. Being placed in the front of the request
service path, the cache helps reduce both the overhead of
crossing the NVMe interface and the cost of accessing the
disk medium. For a fair comparison, we use the implementa-
tion of RocksDB’s KV read cache (the row cache) as SAKER’s
read cache, including its LRU policy, with a new admission
control: only KV items smaller than a threshold are admitted
into the cache, because caching large KV items is not neces-
sary (as the NVMe overhead can be well amortized) and is
also too expensive (as it consumes excessive cache space).

4 Evaluation

We run experiments to understand the performance impact
of the NVMe interface overhead on a KV store in the KV
SSD. We also evaluate the effectiveness of host-side write
batching and read caching to amortize or remove the over-
head with three different KV stores as well as varying KV
item sizes, batching sizes, number of I/O threads in the disk,
cache sizes, and access locality. This extensive study will
help to pinpoint the pain points of the NVMe-based KV
store architecture and reveal the extent to which they can
be alleviated. In the evaluation, we set the four performance-
related parameters in the NVMeVirt emulator as follows.

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

The read latency and bandwidth are 22us and 7GiB, respec-
tively. The write latency and bandwidth are 25us and 5.5GiB,
respectively. The key size is 8B. The three KV stores are a
hash-table-based KV store (Hash-store), an LSM-tree-based
KV store (RocksDB [19]) (LSM-store), and a B+-tree-based
KV store [21] (Tree-store). Experiments are conducted on
a server with dual Intel Xeon E5-2695 v4 18-core proces-
sors (2.10 GHz) with Hyper-Threading enabled and 256 GB
DRAM. To ensure fair performance isolation and minimize
interference, CPU cores are partitioned between host-side
software and the emulated device by assigning them to dif-
ferent NUMA nodes.

Write Throughput In the experiment, four application
threads send 20 million write requests. We first fix the I/O
thread count at 4 and vary batch size from 1 to 64 and value
size from 16B to 4KB. As shown in the left three graphs in
Figure 4, the performance gap between DiskKV and HostKV
is most pronounced with small value sizes and lighter-weight
KV stores, as the gap can be as large as 10X (on Hash-store).
With a light-weight KV store, the NVMe interface is more
likely to become the bottleneck. This 10X performance im-
provement clearly demonstrates that small KV requests dis-
proportionately amplify the cost of the NVMe-KV interface.
Without large KV commands to amortize its overhead, the
bottleneck is materialized. With batching of enough requests
in a command, the gaps can be (largely) closed. In contrast,
with a heavy-weight KV store (Tree-store under random
writes), the gap doesn’t show up. With a large batch size,
DiskKV’s throughput closely matches that of HostKV, indi-
cating that SAKER introduces minimal operational overhead
compared to the execution cost of a host-side KV store.

In another experiment, we fix the batching size at 4 and
change the I/O thread count from 1 to 8 in DiskKV. Due to
the decoupling of application and KV-store software, DiskKV
can independently adjust the processing power, quantified by
number of I/O threads, each running on its own core. With
more I/O threads, DiskKV’s throughput can be higher than
HostKV when performance of the KV store is bottlenecked
by the CPU, such as RocksDB (an LSM-store) with high CPU
demand for its intensive compaction operations. Arguably,
the computing power in a storage device is not supposed to
be as high as, or even higher than that on the host. However,
this experiment result is still relevant and encouraging, as
the device behind an NVMe interface is not limited to an
SSD device. It can also be a KV service provider hosted on
one or a cluster of servers, including disaggregated KV store
via NVMe KV interface.

Read Throughput In the experiment, we choose LSM-
store as the KV store. The workload is to use four read threads
to randomly read over a 500MB data set with zipfian key
access distribution and different cache sizes, value sizes, and
skewness (s). The selected read cache sizes are 0 MB, 128
MB, and 256 MB, where 0 MB indicates that the read cache
is disabled. As shown in Figure 5, the throughput gaps are

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

168, s=0.99 [I1KB, s=0.99 [IHostkV (a) 1 Application Thread

(b) 2 Application Threads

Chen Zhong, Wenguang Wang, and Song Jiang

(c) 4 Application Threads (d) 8 Application Threads

3168, s=0.9 [EW1KB, s=0.9 [ZADiskKV

KTPS

o N & O ®

7
9
7
7
7 m7
U
%
7
7
7
7
7
7
%
g
%
7
7
7

7
9
7
2
2
“n
2
9
2
2
2
7o
7
7
%

—— Hostkv
—— DiskKV
—— DiskKV (10=8)

0MB 128MB
Cache Size

256M|

@

500K 1M 2M 2M 2M 3|

Figure 5. Read Thruput

generally moderate, which is expected. Any miss in the cache
leads to a block read in the disk medium. If the value is small
(such as 16B), the read amplification on the block device
dominates the service time and the NVMe interface is not
a major bottleneck. If the value is large (such as 1KB), the
overhead at the interface can be amortized. Without the
read cache (cache size is OMB), the gap between HostKV
and DiskKV is around 17-25%. With large caches (128MB or
256MB), the gap reduces to less than 5% across the cache sizes
and zipfian skewness. The small gaps reveal the advantage of
repositioning the read cache. The KV SSD vendors therefore
are suggested to minimally provision the read cache.

However, the write buffers on the host and device sides
serve distinct purposes. The host-side buffer in SAKER is
used to batch small NVMe-KV commands, helping to amor-
tize interface overhead. In contrast, the write buffers of an of-
floaded KV store (e.g., RocksDB’s MemTable) are designed to
prepare larger, sequential write structures (SSTables) for on-
flash storage and to reduce write amplification. The host-side
buffer is significantly smaller than the offloaded KV store’s
buffer—a few megabytes versus hundreds of megabytes. As a
result, any redundancy between the two has minimal impact
on overall space efficiency.

The TPC-C Benchmark TPC-C is a benchmark mixed
with read/write requests to evaluate performance of OLTP
databases [22] on LSM-store. In the experiment, we use two
of its five types of transactions (New Order and Payment),
which account for nearly 90% of TPC-C’s workload. A major
operation is to process an order line, which reads from the
ITEM and STOCK tables and writes into the ORDER_LINE
table. In the workload, read and write requests account for
about 60% and 40%, respectively. Figure 6 shows throughput
during a 300-second execution with different application
thread counts. The I/O thread count can be either the same
as that of the application threads ("DiskKV" in the graph) or
fixed at 8 ("DiskKV (IO = 8)"). The batching size is 64 and the
cache size is 512MB. It is observed that the throughput curves
fluctuate during request processing, with the fluctuations be-
coming more pronounced as the number of threads increases.
This behavior is attributed to compaction operations, which
are inherent to any LSM-based KV store. With more threads
the write intensity increases, triggering compactions more
frequently and resulting in greater throughput variability.

M

i o
2M 3M am
Number of Transactions

Figure 6. Comparing HostKV and DiskKV under TPC-C on LSM-store (512MB cache)

With only one thread, the throughput gap cannot be closed
because of the read/write dependency. A set of write requests
can be issued only after their contingent read request is
completed. Although the sync command is not used—which
would otherwise prevent batching of write requests before
and after it—concurrency and batching are still limited under
single-threaded execution. When there are two or more ap-
plication threads, the gap can be closed. Furthermore, when
there are more I/O threads, the increased processing power
on RocksDB for its compaction leads to higher throughput of
DiskKV than HostKV (Figures 6 (b) and (c)). With a 512MB
cache, the hit ratio is 95%. If we reduce it to 32MB, the ratio
becomes 76%. With two application threads, the throughput
gap is about 15% due to choked writes caused by their depen-
dency on reads. With 8 application threads, the increased
concurrency helps almost close the gap (less than 1%).

5 Conclusion and Future Work

This work experimentally reveals the impact of the NVMe
KV interface on KV store workload and proposes SAKER to
close this performance gap. SAKER employs a read cache,
write buffer, and batching to allow NVMe KV stores to per-
form competitively to local on-host KV stores. It presents
a potential solution to cost-effectively introduce the NVMe
KV command set into next-generation KV products.

It is acknowledged that while the NVMe KV Command
Set is designed to provide a key-value interface at the device
level, it does not natively support advanced features such
as transactional operations or range queries across multiple
KV items. Currently, applications must implement these ca-
pabilities at the host side using only the basic PUT, GET, and
DELETE commands. As future work, we plan to enhance
SAKER’s capabilities by either enabling direct support for
these features or facilitating their optimized implementation
at the application level.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. This work was supported by a generous gift from
VMware, Inc., and partially by the U.S. National Science
Foundation under Grant CCF-2313146.

SAKER: A Software Accelerated Key-value Service via the NVMe Interface

References

[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload analysis of a large-scale key-value store.
SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53-64. doi:10.1145/
2318857.2254766

[2] Bigtable [n.d.]. Bigtable: Fast, Flexible NoSQL. https://cloud.google.
com/bigtable.

[3] Carl Dufty, Jaehoon Shim, Sang-Hoon Kim, and Jin-Soo Kim. 2023.
Dotori: A Key-Value SSD Based KV Store. Proc. VLDB Endow. 16, 6
(Feb. 2023), 1560-1572. doi:10.14778/3583140.3583167

[4] Flexible Data [n.d.]. Flexible Data Placement: State of the
Union. https://nvmexpress.org/wp-content/uploads/FMS-2023-
Flexible-Data-Placement-FDP-Overview.pdf.

[5] How much text [n.d.]. How much text versus metadata is in a tweet?
https://gist.github.com/brendano/1024217.

[6] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. 2017. KAML: A Flexible, High-Performance Key-Value SSD.
In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 373-384. doi:10.1109/HPCA.2017.15

[7] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee,
Francisco Londono, Sangyoon Oh, Jongyeol Lee, and Daniel D. G.
Lee. 2019. Towards building a high-performance, scale-in key-value
storage system. In Proceedings of the 12th ACM International Conference
on Systems and Storage (Haifa, Israel) (SYSTOR °19). Association for
Computing Machinery, New York, NY, USA, 144-154. doi:10.1145/
3319647.3325831

[8] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo Kim. 2019.
Transaction Support using Compound Commands in Key-Value SSDs.
In 11th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 19). USENIX Association, Renton, WA. https://www.usenix.
org/conference/hotstorage 19/presentation/kim

[9] Sang-Hoon Kim, Jaehoon Shim, Euidong Lee, Seongyeop Jeong,

Ilkueon Kang, and Jin-Soo Kim. 2023. NVMeVirt: A Versatile Software-

defined Virtual NVMe Device. In 21st USENIX Conference on File and

Storage Technologies (FAST 23). USENIX Association, Santa Clara, CA,

379-394. https://www.usenix.org/conference/fast23/presentation/

kim-sang-hoon

Bill Martin. 2024. NVMe® Key Value Command Set Provides the

Key to Storage Efficiency. https://nvmexpress.org/nvme-key-value-

command-set-provides-the-key-to-storage-efficiency/.

MySQL [n.d.]. MySQL: The world’s most popular open source data-

base. https://www.mysgl.com/.

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek,

Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkatara-

mani. 2013. Scaling Memcache at Facebook. In Proceedings of the 10th

USENIX Conference on Networked Systems Design and Implementation

(Lombard, IL) (nsdi’13). USENIX Association, USA, 385-398.

NVMe Zoned [n.d.]. NVMe Zoned Namespaces (ZNS) Command

Set Specification. https://nvmexpress.org/specification/nvme-zoned-

[10

[t

[11

—

[12

—

[13

—

namespaces-zns-command-set-specification/.

Inhyuk Park, Qing Zheng, Dominic Manno, Soonyeal Yang, Jason Lee,
David Bonnie, Bradley Settlemyer, Youngjae Kim, Woosuk Chung,
and Gary Grider. 2023. KV-CSD: A Hardware-Accelerated Key-
Value Store for Data-Intensive Applications. In 2023 IEEE International
Conference on Cluster Computing (CLUSTER). 132-144. doi:10.1109/
CLUSTER52292.2023.00019

Junhyeok Park, Junghee Lee, and Youngjae Kim. 2025. ByteExpress:
A High-Performance and Traffic-Efficient Inline Transfer of Small
Payloads over NVMe. In Proceedings of the 17th ACM Workshop on Hot
Topics in Storage and File Systems (Boston, MA, USA) (HotStorage ’25).
Association for Computing Machinery, New York, NY, USA, 114-121.
doi:10.1145/3736548.3737837

(14

[l

—
[
w

—

SYSTOR ’25, September 8-9, 2025, Virtual, Israel

[16] PCle 3.0 [n.d.]. Samsung 970 PRO PCle 3.0 NVMeSSD. https://www.
techpowerup.com/ssd-specs/samsung-970-pro-512-gb.d54.

[17] PCle 4.0 [n.d.]. Samsung 980 PRO PCle 4.0 NVMe SSD. https://www.
techpowerup.com/ssd-specs/samsung-980-pro-1-tb.d47.

[18] PClIe 5.0 [n.d.]. crucial-t700 PCle 5.0 NVMe SSDs. https://www.
techpowerup.com/ssd-specs/crucial-t700-pro-4-tb.d 1857.

[19] RocksDB [n.d.]. RocksDB | A Persistent Key-value Store. https://
rocksdb.org/.

[20] Rocksdb [n.d.]. RocksDB Mock File System. https://github.com/
facebook/rocksdb/blob/main/env/mock_env.h.

[21] Ohad Rodeh. 2008. B-trees, shadowing, and clones. ACM Trans. Storage
3, 4, Article 2 (Feb. 2008), 27 pages. doi:10.1145/1326542.1326544

[22] TPCC [n.d.]. TPC-C is an On-Line Transaction Processing Benchmark.
https://www.tpc.org/tpcc/.

[23] NVM Express Workgroup. 2024. NVM Express Key Value Command
Set Specification, Revision 1.1. https://nvmexpress.org/specifications/.

https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/2318857.2254766
https://cloud.google.com/bigtable
https://cloud.google.com/bigtable
https://doi.org/10.14778/3583140.3583167
https://nvmexpress.org/wp-content/uploads/FMS-2023-Flexible-Data-Placement-FDP-Overview.pdf
https://nvmexpress.org/wp-content/uploads/FMS-2023-Flexible-Data-Placement-FDP-Overview.pdf
https://gist.github.com/brendano/1024217
https://doi.org/10.1109/HPCA.2017.15
https://doi.org/10.1145/3319647.3325831
https://doi.org/10.1145/3319647.3325831
https://www.usenix.org/conference/hotstorage19/presentation/kim
https://www.usenix.org/conference/hotstorage19/presentation/kim
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://nvmexpress.org/nvme-key-value-command-set-provides-the-key-to-storage-efficiency/
https://nvmexpress.org/nvme-key-value-command-set-provides-the-key-to-storage-efficiency/
https://www.mysql.com/
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://nvmexpress.org/specification/nvme-zoned-namespaces-zns-command-set-specification/
https://doi.org/10.1109/CLUSTER52292.2023.00019
https://doi.org/10.1109/CLUSTER52292.2023.00019
https://doi.org/10.1145/3736548.3737837
https://www.techpowerup.com/ssd-specs/samsung-970-pro-512-gb.d54
https://www.techpowerup.com/ssd-specs/samsung-970-pro-512-gb.d54
https://www.techpowerup.com/ssd-specs/samsung-980-pro-1-tb.d47
https://www.techpowerup.com/ssd-specs/samsung-980-pro-1-tb.d47
https://www.techpowerup.com/ssd-specs/crucial-t700-pro-4-tb.d1857
https://www.techpowerup.com/ssd-specs/crucial-t700-pro-4-tb.d1857
https://rocksdb.org/
https://rocksdb.org/
https://github.com/facebook/rocksdb/blob/main/env/mock_env.h
https://github.com/facebook/rocksdb/blob/main/env/mock_env.h
https://doi.org/10.1145/1326542.1326544
https://www.tpc.org/tpcc/
https://nvmexpress.org/specifications/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Design
	3.1 The System Architecture
	3.2 KV Stores in an in-Kernel Emulator
	3.3 SAKER's Write Buffer at the Host
	3.4 SAKER's Read Cache at the Host

	4 Evaluation
	5 Conclusion and Future Work
	References

