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ABSTRACT
Major efforts on the design of persistent hash table on a non-volatile
byte-addressable memory focus on efficient support of crash con-
sistency with fence/flush primitives as well on non-disruptive table
rehashing operations. When a data entry in a hash bucket cannot
be updated with one atomic write, out-of-place update, instead of
in-place update, is required to avoid data corruption after a failure.
This often causes extra fences/flushes. Meanwhile, when open ad-
dressing techniques, such as linear probing, are adopted for high
load factor, the scope of search for a key can be large. Excessive use
of fence/flush and extended key search paths are two major sources
of performance degradation with hash tables in persistent memory.

To address the issues, we design a persistent hash table, named
TurboHash, for building high-performance key-value store. Turbo-
Hash has a number of much desired features all in one design. (1)
It supports out-of-place update with a cost equivalent to that of an
in-place write to provide lock-free reads. (2) Long-distance linear
probing is minimized (only when necessary). (3) It conducts only
shard resizing for expansion and avoids expensive directory-level
rehashing; And (4) it exploits hardware features for high I/O and
computation efficiency, including Intel’s Optane DC’s performance
characteristics and Intel AVX instructions. We have implemented
TurboHash on the Optane persistent memory and conducted exten-
sive evaluations. Experiment results show that TurboHash improves
state-of-the-arts by 2-8 times in terms of throughput and latency.

CCS CONCEPTS
•Hardware→ Non-volatile memory; • Information systems
→ Point lookups; • Theory of computation → Concurrent
algorithms.
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1 INTRODUCTION
Hash table is a fundamental data structure for efficient organiza-
tion of key-value (KV) data in the memory. It allows data to be
quickly located without intermediate index search. This is espe-
cially important for organizing a very large number of small KV
items, where often it may take only one cache-line memory access
to retrieve a data item. Had many non-sequential memory accesses
been required on an index structure, such as B+ tree or skip list,
the actual cost of reading a small piece of data would be ampli-
fied by multiple times [28, 37]. Accordingly, hash tables have been
employed to manage key-value cache in the DRAM, such as Mem-
Cached [12, 30] and Redis. With emergence of byte-addressable
non-volatile memory, efforts have been made to design persistent
hash tables on the memory [6, 16, 23–25, 27, 36, 44–47], as well as
using persistent memory to build KV stores [10, 19, 20, 39, 41, 43].

One of the major issues and challenges on designing a high-
performance persistent hash table is on its efficient support of
crash consistency and atomic update. With crash consistency, a data
structure can stay in a consistent state, or be restored to a consistent
state after an unexpected crash. To have the consistency, one has to
enforce a particular order on a set of actions. A simple example is
that a hash table’s bucket has to be allocated and initialized before
its address can be assigned to a pointer in the table’s directory. To
enforce the order, fence/flush primitives (first fence and then flush),
which are expensive, have to be used between the operations. More
extensive use of fence/flush is required for updating a directory
during a rehashing operation.

For data integrity, updating of a piece of data, such as a key
or a value, must be atomic. After a recovery from an unexpected
crash, either a version of the data before the update or the one
after the update must be recovered. This means that the data can-
not be modified in place if it is larger than an atomic write unit
(8 bytes). Otherwise, it may destroy the old version without mak-
ing the new version established at the time of a crash. Therefore,
one has to use out-of-place write. However, this raises two poten-
tial performance issues for a modify/delete request as it needs to
write at different places (creation of a new version and invalida-
tion of the old one). First, currently available persistent memory
often exhibits block-like access performance behaviors. For exam-
ple, Intel Optane DC [18] has a 256-byte internal media access unit
(block) [40]. NVDIMM (with flash as its storage media) [1–3] has
a page-size (0.5KB or larger) media access unit. Two writes at two
different blocks are significantly more expensive than one block
write. Second, ideally the new version can be made visible and the
old version is invalidated with one 8-byte atomic write. Otherwise,
a write order has to be established between the two writes using a
flush/fence.
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Another major issue in the design of a hash table is how to
resolve collision with both time and space efficiency. Upon occur-
rence of a hash collision in a full bucket, there are three approaches
to resolve it. Approach A is to double the size of the hash table
via rehashing to make each bucket be only about half occupied.
Approach B is to apply Approach A only in a segment of buckets
where the collision occurs to avoid global key reshuffling, such as
extendible hashing [11]. And Approach C is to look for an idle slot
in alternative buckets where the colliding key can be placed, such
as cuckoo hashing [32]. These approaches (from A to C) become
increasingly less disruptive to existing hash structures and more
time-efficient. More extensive structural changes will lead to more
space allocations, pointer assignments, and key relocation. Using
a less disruptive approach can greatly help reduce impact of colli-
sion on the performance, especially on persistent memory where
additional costs have to be paid for retaining crash consistency.

Approach C is usually known as open addressing. Example tech-
niques include linear probing, quadratic probing, cuckoo hashing,
Horton Tables [5], and Hopscotch hashing [15]. However, not all
of the schemes play well with the persistent memory. For example,
cuckoo hashing and its variant Horton Tables need to constantly
relocate keys along a path to reach an idle slot. It has to frequently
use expensive fence/flush. Schemes such as quadratic probing and
cuckoo hashing often write new keys to non-consecutive buckets.
For a read request to locate the key on its probing path consisting of
non-consecutive buckets, its access speed is much lower than linear
probing where the probing path represents a contiguous memory
space. For example, Optane DC memory is capable of sequential
prefetching with a sequential access speed 2-3X higher than that
of random access [38, 40].

While a linear probing can be efficient, there are some critical
issues to be addressed. First, the adjacent buckets on a probing path
must be physically contiguous for search efficiency; Second, the
probing scope must be sufficiently large for a high load factor and
less frequent rehashing. Load factor is the size ratio of the space
used for holding actual data and allocated space. It quantifies the
space efficiency of a hash table. Without a carefully designed key
placement policy, a search, especially a negative search (whose
search key is not in the hash table), may have to cover most or all
buckets in a probing scope, compromising read performance.

Our Solution In this paper, we propose a persistent hash table
design, named TurboHash, for a high-performance key-value store
on the persistent byte-addressable memory that exhibits the block-
access performance characteristic by addressing all of the afore-
mentioned issues. We use Intel Optane DC as the representative
persistent memory (the PMEM hereafter) in the design. TurboHash
first hashes keys into multiple shards. Each shard is a small hash
table, which is set at a limited capacity (e.g., 1MB for 53,000 16-byte
KV items) to cap the worst-case time (the tail latency) of requests
serviced within a shard. In the meantime, we lavishly pre-allocate
shards so that a TurboHash store’s capacity limit can be way higher
than the size of the physical PMEM a server can actually have. As
each shard consumes only 8-byte metadata, this over-provisioning
is well affordable. As an example, for a TurboHash with one million
shards to provide an 8TB capacity limit (assuming a 8MB shard
capacity), the space cost of representing shards is only 8MB. In

return, this shard over-provisioning strategy avoids expensive re-
sizing (or rehashing) over the entire hash table that may seriously
compromise tail latency. There are only localized and small-scale
resizing within individual shards to minimize tail latency.

TurboHash achieves much desired features, such as lock-free
reads and short probing paths, which are often objectives of other
hash-table optimization efforts. A unique contribution of Turbo-
Hash is its novel design that enables these features by accommo-
dating the PMEM’s block-like performance characteristics [43]. It
has a 256-byte block access unit. Any small random access, such
as updating of a few bytes of metadata, in the table may result in
over 10X read/write amplification. Prior optimization techniques
that assume an in-DRAM hash table may become ineffective for the
PMEM. In one example, for lock-free reads, existing works, such as
CLEVEL [6], carry out updating of a KV item usually by creating
a new version and atomically switching the pointer pointing to
the item from its old version to the new version. As the pointer
and new version of the (small) item are often in two different 256B
blocks, there would be two block writes, which is not efficient. In
another example, to avoid holes due to deletions in a linear probing
path, it has been suggested to move the item at the path tail to fill a
hole [22]. However, this may involve two writes at different PMEM
blocks: one is to invalidate the tail item, and the other is to write it
into the hole.

To this end, TurboHash makes a number of innovative design
choices to confinemultiple writes/reads of data andmetadatawithin
one 256B PMEM block to unlock its full performance potential.
In particular, TurboHash’s buckets are of 256 bytes each and are
physically contiguous. It proposes to use near-place update (in
the same bucket where the old version stays), instead of out-of-
place, and one atomic write to invalidate/validate old/new versions,
respectively, of a KV item within the 256B bucket to enable efficient
in-PMEM lock-free reads.

In summary, we make a number of contributions:
• Recognizing that a large probing scope is important for a
high load factor and infrequent rehashings, we experimen-
tally reveal that actual probing distances can bemuch shorter
than the probing scope. We then propose a strategy that
enables only necessary probing distances, especially for neg-
ative search.

• We tailor TurboHash’s design for a large-scale KV store on
persistent memory with its sharded structure and physically
contiguous bucket layout for minimal use of fence/flush and
efficient memory access.

• This work represents a first effort of extensively exploiting
PMEM’s block-access-like performance characteristic in its
design to customize hash-table optimization techniques.

• We evaluate TurboHash in comparison with recently pro-
posed persistent hash table designs, such as CCEH, dash,
and CLEVEL hashing. Experiment results show that Turbo-
Hash has 2× to 8× improvements in terms of throughput
and latency.
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Figure 1: Load factors and average probing distances with
different probing scope (in number of buckets) during inser-
tion of 100 million KV items.

2 MOTIVATIONS
In this section we present results of an experimental study on the
characteristics of linear-probing-based hash tables on the PMEM
to serve as rationale of TurboHash’s design.

Probing Scope and Distance. In a hash table using open ad-
dressing, the number of alternative buckets where a new key under
collision can be placed is highly correlated to the table’s load fac-
tor. The more alternative buckets, the more leeway a key has for
its placement at locations other than its home bucket (the bucket
initially given by the hash function). A key’s probing scope refers
to the set of buckets this probe is likely to reach (starting from
its home bucket). Increasing the scope is important for high space
efficiency. We assume a new key is placed in the first bucket with
idle slot(s) on its linear search path. A key’s search path grows
within its probing scope when more keys are hashed to its home
bucket. The path ends at the bucket where the newest key to the
home bucket is inserted. In theory, a key probing can terminate
at the last bucket on the path. The probing distance is the actual
number of buckets a probe has to traverse on the path to either
find the search key (positive search) or declare the key doesn’t exist
in the table (negative search). Therefore, the distance is capped
by the path’s length and can be shorter than the probing scope’s
size. Still, increasing the probing scope allows for longer probing
distances, which may make a key search more expensive. We study
the relationship between probing scope, load factor, and probing
distance. To this end, we set up a linear-probing-based hash table
of 1024 buckets. Each bucket has 16 16B-slots. The table is rehashed
by doubling its size whenever a collision cannot be resolved within
a probing scope. We keep inserting keys to an initially empty hash
table with a given probing scope size. Figure 1a shows load fac-
tors right before every rehashing. As shown, the scope size has a
significant impact on the load factor. Small scopes, such as 2 or 4
buckets, can lead to too-low load factors. A search path’s length
represents the necessary probing distance of a negative search for
a key, as the key doesn’t exist beyond the path’s end. Figure 1b
shows average search distances corresponding to load factors in
Figure 1a at different probing scope sizes. As shown, the neces-
sary search distance can be much shorter than the corresponding
probing scope. For example, at the 6th rehashing the load factor
is 0.8 with the 16-bucket scope. But the average probing distance
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Figure 2: PMEM performance (random and sequential) mea-
sured by the PCM (Processor Counter Monitor) tool. Each
write is followed with a clwb to flush the data, and each
group of writes is followed withmfence.

is only 1.7 buckets. This implies that as long as the search path is
recognized, the actual probing distance can be short for high access
performance, and a large probing scope can be used for high load
factor.

Sequential and Random Accesses. To illustrate the perfor-
mance gap between sequential and random accesses on the persis-
tent memory, we experimentally simulate access patterns where
each probing is either on random memory locations or sequen-
tial locations. Each probing consists of a group of 8-byte accesses.
These accesses are on different 64-byte memory spaces (simulat-
ing buckets), which are either randomly or sequentially placed. A
probing always starts at a random location. The access group size
is set to 1, 2, 4, 8, 16, or 32 (simulating probing distance). Figures 2a
and 2b show the read/write throughput and average latency for
each access group. As shown, for a reasonably large group, such
as those with 4 or more accesses, sequential performance is signifi-
cantly higher than that of its random counterpart in terms of either
throughput or latency. The gap becomes even larger with a larger
group. With a group of 16 accesses, the performance gaps are about
4-7X. The reason is that the PMEM is accessed in the 256B unit.
With a random access of 8 bytes, one 256B block is actually accessed
at the persistent memory’s media [40], causing a significant read
or write amplification. A sequential access can also benefit from
the prefetching mechanism.

3 THE DESIGN OF TURBOHASH
There are a number of challenges we must address to achieve Tur-
boHash’s design objectives, including high load factor, sequential
and short search path, support of out-of-place updates, crash con-
sistency, lock-free reads, and minimal use of fence/flush. The chal-
lenges that have been addressed in the design include: (1) how to
limit a search within necessary distance, rather than the entire
probing scope, especially for non-existing keys? (2) how to switch
from the old version to the new version of a KV item in one atomic
primitive? and (3) how to leverage hardware features such as the
PMEM’s internal block-access characteristic and CPU’s SIMD exe-
cution support for higher I/O and computation efficiency?
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Figure 3: TurboHash’s Architecture. When key or value is
larger than 8 bytes, the slot in a bucket stores an 8-byte
hashed key and an 8-byte pointer to the KV item, which is
stored at a separate space.

3.1 The Architecture
As we have stated, the entire key space is partitioned into many
shards. Keys in each shard are organized in a hash table. Each of
the hash tables can have thousands of 256B buckets. It supports
efficient resizing, high load factor, and high-performance access. By
using a highly randomized hash function, such as MurmurHash [4]
or MD5, keys are uniformly hashed into the shards.

As shown in Figure 3, each shard has a descriptor. All descriptors
form a shard directory. The directory stays in the PMEM for its
persistency, and is mirrored in the DRAM for access efficiency. Each
shard descriptor records bucket count in the shard and a pointer
to the shard. There are differences between shard descriptors in
the PMEM and in the DRAM. In the PMEM, it includes two sets
of bucket count and pointer to allow out-of-place updating of the
count/pointer after a shard resizing. Additionally, it has a 1-byte
version number indicating which set is currently in use. After writ-
ing a new set of count/pointer, an atomic update of the version
number makes it effective. Then, count/pointer in the correspond-
ing descriptor in the DRAM are updated. And the old shard will be
recycled using the epoch-based reclamation [13].

There is a write lock (WriteLock) in the in-DRAM descriptor
that establishes mutual exclusion among service of write requests
(i.e., insert, update, or delete) in a shard. Because there can be many
(a few thousands or more) shards in the hash table, the impact of
the lock on concurrency is limited. In particular, this lock is only
applied on writes, which are more expensive as they likely involve
writing KV items, updating metadata, and even shard rehashing. In
contrast, TurboHash makes service of read requests fully lock-free.

3.2 Establishing the Search Path
A shard is allocated as a whole with all of its buckets in a contiguous
space. Each bucket has a fixed number of slots. Each slot holds one
KV item. For a linear probing scheme, in today’s practice a new KV
item can be placed into any empty slot within the probing scope.
Slots can become available anywhere in the scope whenever their
resident KV items are deleted. New KV items may be placed in any
of these empty and other available slots in the scope. While such
a placement without restriction is flexible and space efficient, it
often makes the search distance much longer. In the search for a
non-existing key, which is the operation carried out before every
new key insertion, the distance will always be the scope size. A

search has to proceed until the search key is found or it reaches
the boundary of the probing scope. The buckets do not contain
information to establish a search path which can be (much) shorter
than the scope size so that only necessary buckets are searched.
As indicated, if we can keep new KV items in buckets as close as
possible to their home bucket and establish a search path covering
the buckets, a search does not have to walk beyond the path. In this
case, when the scope is set to a large size for high load factor, the
cost of key search does not have to increase proportionally.

The solution appears at first sight to be a straightforward one,
which is just to place a new KV item in the available slot on its
linear search path and remember the path’s last bucket. This is
a valid idea. However, the difficult question is how to remember
a path’s last bucket. An intuitive approach would be to explicitly
record this path-end information and update it whenever the path
grows. But this approach leads to high time overhead and likely
high space overhead. The possible places where the path-end can
be recorded may be the home bucket, the currently end bucket
on the path, or a separate data structure. In any of the places its
updating overhead can be too high. When a new item is written
into a new bucket and extends the path, the path-end must be
accordingly updated (an ancillary write). These two writes are
likely in two different PMEM’s blocks, which are actually two block
writes. Furthermore, the ancillary write must be completed before
the KV write to guarantee following reads will reach the new item
and the new item can be reached after a system crash. To this end,
a fence/flush is required. If the path-end is recorded in the end
bucket, two ancillary writes are required when the path grows (one
in the new end bucket for indicating the new path-end and one
in the old end bucket for invalidating it). Furthermore, the space
overhead can be too high, as a bucket can simultaneously be the
end bucket of multiple paths (up to the probing scope size). It would
be too expensive for each bucket to pre-allocate such a large space
for these possible paths. To address the issue, TurboHash doesn’t
record and update this path-end information at all. Its approach is
motivated by three observations. (1) In most of the time a hash table
has abundant empty bucket slots until a rehashing is to be triggered
soon. (2) Once a rehashing is carried out, many empty bucket slots
are spread out in the table. And (3) even when a rehashing is near,
the load factor is still less than 80-90% (see Figure 1a). Therefore,
TurboHash uses a non-fully occupied bucket (with empty slots)
to indicate a path end. To this end, it gives a slot whose data has
been deleted a flag indicating that this slot is available for receiving
a new KV item but isn’t considered an empty slot. A path grows
only when there are not empty slots in its current end bucket (and
certainly not in any other buckets on the path). In this way, if a
bucket with empty slot(s) are encountered during a search on a
path, it is guaranteed that the search key will not be found beyond
this bucket and continuous search is not necessary. Admittedly, this
bucket may not be an accurate end bucket of the path (as it may not
contain key(s) hashed to the path’s home bucket). However, this is
good enough to significantly reduce number of buckets involved in
a search, as will be demonstrated in Section 4.

Another design issue is on the update operation. As we have
indicated, for data crash consistency, an out-of-place write, instead
of in-place overwrite, is required for an update operation. The chal-
lenges are similar to that with updating of the path-end information.
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First, there are two writes: one for writing the new KV item and
an ancillary one for invalidating its old version. These two writes
would be random accesses if without a careful arrangement. Second,
the operation that makes the new version visible and the old ver-
sion invisible has to be an atomic one for correctness if a lock-free
read is allowed for high throughput. TurboHash’s solution is to
introduce near-place update, which limits the out-of-place write
within the same bucket where the old-version KV item resides. As
a bucket is of 256B and the metadata on (in)validating slots in a
bucket are within a 8B atomic write unit, all the writes are in one
the access block with high efficiency.

3.3 A Bucket’s Data Structure
As we have mentioned, for access efficiency each bucket is set at
256B long, the access unit of the the PMEM. As shown in Figure 3,
within a bucket there are 14 slots, each for storing a KV item with
a 8B key and a 8B value. The 8B value can be a pointer to another
space where the real value is stored should the value is larger than
8B. Besides the data, there are three types of metadata in a bucket.
One is about slot status, including the valid bitmap and the delete
bitmap. A bit in the 2-byte valid bitmap indicates whether the key
in the corresponding slot is valid. A bit in the 2-byte delete bitmap
indicates whether the KV item in the corresponding slot has been
deleted. A slot’s valid bit becomes 1 when a new KV item is written
into it. When this item is deleted, its delete bit becomes 1. However,
its valid bit remains as 1 as the key in the slot is still meaningful.
A slot holding a deleted key isn’t considered as an empty slot for
the purpose of detecting a path end. Only a slot whose valid bit is 0
is defined as an empty one. However, the slot holding the deleted
item is available to receive a new KV item by overwriting the
deleted one. An insert operation always writes a new KV item in
the first slot with a deleted item (if available) on its search path.
After the overwriting, this slot’s valid and delete bits become 1 and
0, respectively.

The second type of medadata is for concurrency control, includ-
ing a 4-byte sequence number. This number is incremented by one
whenever a write operation (delete, insert, or update) happens in
the bucket. It facilitates lock-free reads.

The third type of metadata is for improving performance, in-
cluding an array of tags. A tag is a 1-byte summary of a key by
hashing the key in the corresponding slot. By grouping 14 sum-
mary keys in an array, TurboHash can use an SIMD instruction
(“_mm_cmpeq_epi8_mask") for a quick preliminary search of all
keys in a bucket.

As mentioned, TurboHash introduces the near-place update for
high efficiency. To this end, it reserves an empty slot in each bucket
for out-of-place updating of a KV item in the same bucket. That is,
if a slot is the only (last) empty slot in a bucket, it doesn’t accept
a new KV item. This bucket is considered full for the purpose of
indicating a path end.

3.4 Insert, Update, Delete, and Read
We describe the search operation before detailing how the four
types of requests are served.

Search and find an empty slot 
at the path end. Insert at the path-end bucket
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Figure 4: Illustration of inserting a new KV item ("K7V7").
There are four slots in a bucket. Shaded boxes in the bitmap
indicate valid or deleted slots. "Seq#" is incremented after an
insert to support lock-free reads.

The Search Operation. Search for a given key is the most
frequently operation in a hash table. It not only is used to ser-
vice a read request but also has to be employed before every in-
sert/update/delete operation is performed at a bucket. The differ-
ence between a read request and a write request is that the latter
one needs to hold the write lock during the search. Like that in
any linear-probing hash table, a search begins at the home bucket
determined by the search key and the hash function, and continues
on the sequential search path. At each bucket on the path, it needs
to compare the search key with each of keys in the bucket. To speed
up this process, TurboHash compares a 1-byte hashed value of the
search key with each of the 14 tags in the bucket in parallel by
using an Intel AVX SIMD instruction. Only the slots whose tags are
matched and their valid bits are set and delete bits are not set will
have their keys compared with the search key. If there is a match
with the search key, the search key is found. If there isn’t a match
of the search key, the search will continue to the next bucket. It
will terminate at a bucket where a matched key is found or at the
path-end bucket, which is defined as the one with more than one
slot whose valid bit is 0, or the one that has at least two empty
slots (one of them is reserved for near-place update). The search
operation is part of an insert/update/delete/read request service (as
shown in Algorithm 1).

Insert. The thread servicing an insert request first acquires the
write lock and proceeds with the aforementioned search operation
for an empty slot or a valid slot that contains the search key within
the search scope. Note that the empty slot does not include the
one containing a deleted key. The search remembers position of
the first deleted key it encounters. If the search reaches the path
end (a bucket with more than one empty slot with one of the them
reserved for near-place updating), this is a negative search. If a
deleted key has been recorded on the path, the new key is inserted
in its slot. Otherwise, it is inserted in one of the empty slots in the
path-end bucket, as shown in Figure 4. To facilitate lock-free read,
the insert thread takes two steps for the insert operation in a bucket.
It first writes the key and value into the 16B-slot’s data segment as
well as the corresponding tag. It uses fence/flush to secure the data
on the PMEM before moving to the second step, in which it makes
the new data visible to reads. Specifically, it uses one 8-byte atomic
write to set valid and delete bits to ’1’ and ’0’, respectively, and
increments the sequence number by 1. Again it uses fence/flush to
conclude the insert and then releases the write lock. If the search
reaches end of the search scope and still cannot find an empty space
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Figure 5: Illustration of the near-place update (left) and
delete (right). KV items in the grayed-out slots have been
invalidated.

Algorithm 1: Lock Free Search
1 Function Search(𝑘𝑒𝑦, 𝑐𝑎𝑙𝑙𝑏𝑎𝑐𝑘):
2 [slot, isfind] = FindSlot(key)
3 if isfind then
4 callback (slot)
5 return TRUE
6 return FALSE
7 Function FindSlot(𝑘𝑒𝑦):
8 key_hash = Hash(key)
9 shard = LocateShard(key)

10 bucket = LocateBucket(shard, key_hash)
11 hash_tag = ExtractTag(key_hash)
12 probe_distance = 0
13 while probe_distance < MAX_DISTANCE do
14 seq_no = bucket.meta.seq_no
15 match_pos = bucket.SIMDmatch(hash_tag)
16 foreach pos ∈ match_pos do
17 slot = buckets.slots[pos]
18 if key == slot.key then
19 if bucket.NeedRetry(seq_no) then
20 bucket = LocateBucket(bucket.id)
21 go to 14 // Retry in current bucket
22 return {slot, TRUE}
23 if bucket.ReachSearchEnd() then
24 return {"", FALSE}
25 bucket = bucket.Next()
26 probe_distance++
27 return {"", FALSE} // Reach maximum probe

distance.

or deleted space for an insertion, it performs shard rehashing and
then inserts the key in the enlarged shard before releasing the write
lock. If the search arrives at a valid slot holding the search key not
yet deleted, this insert is an update . The pseudocode for insert and
update is in Algorithm 2.

Update. As mentioned, TurboHash’s update operation is a near-
place update. Like the insert operation, an update within a bucket
also takes two steps. Holding the WriteLock, the thread uses an
empty slot in the bucket as the reserved slot to write the new KV
item and updates the corresponding tag followed with a fence/flush.
It then uses one atomic write to the slot’s valid bitmap to turn the
old version invalid and this new version visible, and increments
the sequence number by one, as shown in the left graph of Figure 5.
With the atomicity, the valid bits for the old and new version slots

Algorithm 2: Insert and Update
1 Function Insert(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒):
2 shard = LocateShard (key)
3 WriteLockGuard guard(shard)
4 is_find, bucket_id, slot_id, old_slot_id =

FindSlotForInsert(key)
5 if is_find == TRUE then
6 bucket = LocateBucket(bucket_id)
7 bucket.Insert(key, value, slot_id, old_slot_id)
8 return TRUE
9 else
10 shard.Rehash()
11 go to 2
12 Function Bucket::Insert(𝑘𝑒𝑦, 𝑣𝑎𝑙, 𝑠𝑙𝑜𝑡_𝑖𝑑, 𝑜𝑙𝑑_𝑠𝑙𝑜𝑡_𝑖𝑑):
13 slot = slots[slot_i]; tags[slot_i] = key.tag
14 slot.key = key; slot.val = val
15 CLWB, SFENCE
16 new_meta = this->meta;
17 new_meta.valid = new_meta.valid | ( 1 << slot_i )
18 if old_slot_i ≠ -1 then
19 new_meta.valid ⊕ = ( 1 << old_slot_i )

// Epoch based reclamation.
20 epoch.markForDeletion(slots[old_slot_i])
21 new_meta.delete & = ∼( 1 << slot_i )
22 new_meta.seq_no++
23 this->meta = new_meta
24 CLWB, SFENCE

can only be ’10’ or ’01’ at anymoment during the operation.Without
holding any lock, a read thread can see one and only one version
at any moment. After this, the WriteLock is released.

Delete. After a delete service thread identifies the slot storing
the same valid key that has not yet been deleted using the search
operation with the WriteLock, it uses one atomic write to set the
slot’s delete bit and increments the sequence number by one, as
illustrated in the right graph of Figure 5. It then releases the lock.
Note that it does not reset the slot’s valid bit, and thus does not
break any search paths (as shown in Algorithm 3).

Read. A read thread does not need any lock. It uses the search
operation to look for the key. If it is not found within the probing
scope, the read completes, declaring non-existence of the key. Oth-
erwise, if a valid and non-deleted key is found in a slot, we cannot
simply return the value in the slot. Because without holding a lock,
the read value is likely modified right before the read and is thus a
wrong one.

Within the slot there are two phases of read. One is carried out
by the search operation, including reading the tags, valid/delete
bits, and the keys for comparison. If the first phase finds the read
key, the second phase is to read the corresponding value. These
two phases of read are not atomic and cannot prevent other write
threads from interfering. To eliminate a potential hazard, the read
thread reads the sequence number before and after reading the
value. Fence is placed between the two reads to ensure the ordering.
It then compares the two numbers. If they are equal, the correct
value has been read. Otherwise, the value may have been modified
and could be wrong. And the read operation is retried.
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Algorithm 3: Delete
1 Function Delete(𝑘𝑒𝑦):
2 shard = LocateShard (key)
3 WriteLockGuard guard(shard)
4 bucket = LocateBucket(shard, key_hash)
5 probe_distance = 0
6 while probe_distance < MAX_DISTANCE do
7 match_pos = bucket.SIMDmatch(hash_tag)
8 foreach pos ∈ match_pos do
9 slot = buckets.slots[pos]

10 if key == slot.key then
11 bucket.Delete(pos)

/* Epoch based reclamation */
12 epoch.markForDeletion(slot)
13 return TRUE
14 if bucket.ReachSearchEnd() then
15 return FALSE
16 bucket = bucket.Next()
17 probe_distance++
18 return FALSE // Reach the maximum probe distance.
19 Function Bucket::Delete(𝑠𝑙𝑜𝑡_𝑖𝑑):
20 new_meta = this->meta;
21 new_meta.delete |= 1 << slot_id
22 new_meta.seq_no++
23 this->meta = new_meta
24 CLWB
25 SFENCE // Persist the 8-byte bucket meta.

To explain why reading wrong values will not occur with the
use of sequence number, we examine the timeline of the relevant
read/write events. For the read thread there are four read events,
which are R1 (read the tags), R2 (an atomic read of valid/delete
bits and sequence number) for all slots with valid/non-deleted bits
and matched tags, R3 (read the relevant keys and then value of the
matched key), and finally R4 (read the sequence number again). We
consider a write request (delete, insert, or update) is completed at
its last atomic write to update bitmaps and increment the sequence
number. If the two sequence numbers are equal, there must not be
any write requests completed between R2 and R4 because any such
a completion will cause the sequence number to be incremented.
Furthermore, because service of write requests is serialized, there
is at most one write request between R2 and R4. Otherwise, there
must be a completion of a write request. Fortunately, if there is
a write request between R2 and R4, it is guaranteed that it will
not modify the bitmaps/sequence-number, or the read key and its
value in the bucket. First, if the write request is an insert, it must
have matched with a key different from the read key. Otherwise,
the valid/non-deleted status of the read key would keep it from
inserting in the bucket. Second, if it is a delete or an update, both
do not change the read key and value. Therefore, if the read thread
confirms that the sequence number does not change, the read value
must be correct. In addition, we show that a read thread can always
find its target key and value if they are in the table. Obviously this
is not an issue if the target key is not involved in any write requests
during the read service. The target key is not available for the read
if it is read after a delete or before an insert of the key. This is not
an issue either. If the key is the target of an update during the read
(between the R2 and R4 read events), the read thread can always

Algorithm 4: Ancillary Functions
1 Function FindSlotForInsert(𝑘𝑒𝑦):
2 key_hash = Hash(key)
3 shard = LocateShard(key)
4 bucket = LocateBucket(shard, key_hash)
5 bucket_id = -1
6 slot_id = -1
7 hash_tag = ExtractTag(key_hash)
8 probe_distance = 0
9 while probe_distance < MAX_DISTANCE do
10 match_pos = bucket.SIMDmatch(hash_tag)
11 foreach pos ∈ match_pos do
12 slot_key = bucket.slots[pos].key
13 if key == slot_key then
14 slot_id = bucket.PickEmptySlot()
15 return {TRUE, bucket.id, slot_id, pos}
16 if slot_id == -1 And bucket.meta.delete ≠ 0 then
17 bucket_id = bucket.id
18 slot_id = bucket.PickDeleteSlot()
19 if bucket.ReachSearchEnd() then
20 if slot_id == -1 then
21 bucket_id = bucket.id
22 slot_id = bucket.PickEmptySlot()
23 return {TRUE, bucket_id, slot_id, -1}
24 bucket = bucket.Next()
25 probe_distance++
26 if slot_id ≠ -1 then
27 return {TRUE, bucket_id, slot_id, -1}
28 return {False, -1, -1, -1}
29 Function Bucket::SIMDmatch(ℎ𝑎𝑠ℎ_𝑡𝑎𝑔):
30 hash_vec = _mm_set1_epi8 (hash_tag)
31 res = _mm_cmpeq_epi8_mask (hash_vec, tags);
32 return res & valid & (∼ delete)
33 Function Bucket::NeedRetry(old_seq_no):
34 if old_seq_no ≠ meta.seq_no then
35 return TRUE
36 return FALSE
37 Function Bucket::PickEmptySlot():
38 return __builtin_ctz(∼ valid )
39 Function Bucket::PickDeleteSlot():
40 return __builtin_ctz(delete)
41 Function Bucket::CanInsert():
42 return delete != 0 or ReachSearchEnd()
43 Function Bucket::ReachSearchEnd():
44 return __builtin_popcount(valid) < 13

read a value (assuming the key is not yet deleted). If the update
completes before R4, a retry will be performed to read the new
value. Otherwise, it will read the old value.

3.5 Shard Resizing
Shard resizing is performed by an insert thread when it cannot find
an available slot within the probing scope. Then the shard, whose
size is up to a few MB, is sequentially read to the DRAM, where an
enlarged shard is built. The new shard is then sequentially written
to the PMEM. During the period of time, read requests can still be
served on the old version of the shard. When the new shard has
been persistently written, the pointer to the shard in the shard’s
descriptor is updated (first in the PMEM descriptor then atomically
updated in the DRAM). After this, all requests will be served on
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the new version. When the read threads on the old shard complete
their service, the space for the old version can be reclaimed when
no other threads access it.

3.6 Variable-Size Items and Consistency
TurboHash stores an oversized KV item into a dynamically allocated
space. It then writes its hashed-key and a pointer to the space into
an 8-byte/8-byte bucket slot in the hash table. There are three po-
tential consistency-related issues. (1) Updating indirectly a remote
KV item is not atomic and may compromise the data. For this, Tur-
boHash uses out-of-place updating, which writes the new version
into a separate space and then frees the old space. (Note that out-of-
place updating is also used for regular 8B-key/8B-value KV items
for consistency). (2) When a dynamically allocated space is being
reclaimed, on-going lock-free reads may still be on the space. There-
fore, TurboHash uses the epoch-based reclamation technique [13],
where pointers to to-be-freed spaces are first sent to a garbage
pool, and a space is reclaimed only when no threads are accessing
it. (3) Dynamically allocated space and its pointer recorded in a
bucket slot may not be crash-consistent (e.g., a crash may occur
after the space is allocated and before the pointer points to the
space). TurboHash uses a leak-free PMEM allocator to avoid mem-
ory leaks. Intel’s Persistent-Memory-Development-Kit(PMDK) sup-
ports atomic allocation and free operations(e.g., pmemobj_alloc()
and pmemobj_free()). They take address of the pointer to the al-
located space, atomically allocate/free the space and update the
pointer in a thread-safe and fail-safe manner. The transactional
operations are guaranteed to be entirely completed or discarded on
recovery.

3.7 Failure Recovery
TurboHash does not change its directory structure. It introduces a
new shard with an 8-byte atomic update by modifying its version
number in the PMEM and the 8-byte ShardMeta in the DRAM
(shown in Figure 3). All the operations are protected with the Intel
PMDK’s transactions support, which protects the data structure
from corruption due to a power failure. Therefore, a system crash
will not lead to consistency issue for the directory. As all writes are
only available after committing the valid/delete bitmaps, partially
updated KV items are not visible to users. The only operation for a
failure recovery is to read the directory in the PMEM and rebuild
the in-DRAM directory.

4 EVALUATION
In this section, we evaluate TurboHash by comparing it with
several state-of-the-art hash tables for persistent memory, in-
cluding CCEH [27], Dash [25], P-CLHT [24], and clevel hash-
ing (CLEVEL) [6].We implement TurboHash using Intel’s Persistent
Memory Development Kit (PMDK) [17]. CCEH is a dynamic hash
table for persistent memory. It supports resizing through segment
splitting and directory resizing. Dash is also a dynamic hash table.
It is similar to CCEH, but with several optimizations, including fin-
gerprinting [31], and version-based search. P-CLHT is a linked-list
based persistent hash table derived from CLHT [8]. Each bucket of
P-CLHT can store three KV items. CLEVEL is an upgraded version
of level hashing [45] by enabling asynchronous resizing.

Table 1: Comparison of Design Choices

Hash Table Bucket Size Probing Scope Search Strategy

CCEH 64B 8 contingous
buckets search all

CLEVEL 64B 4-8 random
buckets search all

CLHT 64B all buckets
on linked-list search all

Dash 256B 2 buckets
+ stash buckets search all

TurboHash 256B 16 contiguous
buckets

buckets on a
search path (avg < 2)

4.1 Experiment Setup
In our experiments, we use two different key-value sizes for com-
parison, 16 bytes (8B key and 8B value) and 30 bytes (15B key and
15B value). In the case of 30-byte KV items, real key and value
are in a separately allocated space, and a 8B hashed key and a
8B pointer to the space are stored in the hash table. CCEH16 and
DASH16 assume 16-byte KV item (8B key and 8B value). CCEH30,
CLEVEL30, and CLHT30 use 30-byte key-value items (15B key and
15B value). They are implemented using libpmemobj by authors
of the clevel hashing paper (git:#13ad3f2) . The TurboHash with
16B and 30B KV items are named TURBO16 and TURBO30, respec-
tively. All the threads in an experiment are pinned to one socket
using numactl. For a fair evaluation, other hash tables in compari-
son are pre-sharded(into segments/buckets). All of the hash tables
are initialized with a capacity of 12 million KV items. In the ex-
periments, TurboHash is initialized with 64K shards (each has 16
buckets to have a total of 12 million slots at the beginning), and
uses a 16-bucket probing scope. CCEH16 uses a 8-bucket scope (we
use the copy-on-write version in the evaluation as it provides better
read performance). CCEH30 uses a 4-bucket scope, as suggested in
their code. CLEVEL30’s scope is between 4-8 buckets, depending
on its level count. CLHT30 conducts probing within a hash bucket.
Its buckets are organized on a linked list for collision resolution.
Table 1 compares basic design choices of the hash tables.

The experiments are run on a server with an Intel Xeon Gold
6230 20-core processor, 64GB DRAM, and 6×128GB Intel Optane
DC. .

4.2 Overall Performance
To evaluate the performance of the hash tables, we conduct exten-
sive experiments, including insertion of new KV items (Insert), read-
ing existent keys (Positive Read), reading non-existent keys (Neg-
ative Read), overwriting existing KV items (Update), and delet-
ing all KV items (Delete). Experiment results are shown in Fig-
ure 6. In each experiment different number of threads (from 1 to 40
threads) are used. For Insert, Update, and Delete, each thread sends
120million/Number_of _threads requests. For Positive Read and
Negative Read, each thread sends 10 million requests. Figure 6 re-
ports throughput of the hash tables (number of requests serviced
per second) and the corresponding raw PMEM I/O volume. This
I/O volume represents all read/write data amount on the Optane
PMEM’s media, including amplified I/O due to its 256B access unit.
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Figure 6: Throughput and PMEM I/O volume with different requests per threads.

It is measured with ipmwatch, available in the Intel VTune Amplifie
tool.

Insert. TurboHash conducts about four rehashings within a
shard during the insertions. Other hash tables in comparison also
conduct four rehashings. All the hash tables have a load factor
of around 50%. For small key-value size (8B key and 8B value),
CCEH16, DASH16, and TURBO16 store the data in the hash table
slots. As shown in Figure 6a, with fewer than 20 threads TURBO16
and CCEH16 have similar insert performance. When the number of
thread is more than 20, TURBO16’s throughput is 10% higher than
CCEH16. The performance gap between TURBO16 and CCEH16 is
due to use of lock: TURBO16 uses a DRAM spinlock while CCEH16
uses an in-PMEM writer lock on its hash table segment. The lock
on the PMEM causes more performance penalty because of the
contention on the PMEM XPBuffer and contention in the iMC [40].
DASH16 tries to displace the KV items between the buckets to
have a balanced insert, which causes more I/O during insertion. As
shown in Figure 6f, DASH16 has 30% more I/O than TURBO16 and
CCEH16. For 30-byte KV size, TURBO30’s throughput is about 4×
higher than the others. For CCEH30, we see a much larger amount
of PMEM I/O (10× more than TURBO30’s) (see Figure 6f). The
main reason is that in order to support the atomic update opera-
tion for data size larger than 8 bytes, CCEH30 uses libpmemobj’s
transaction feature for out-of-place writes. It uses undo logging for
application object updates, and introduces large write amplifica-
tion [42]. Because of the limited PMEM bandwidth, this much in-
creased I/O leads to CCEH30’s large write throughput degradation.
While CLHT30 uses a linked list to organize its buckets, searching
on the list causes random small access on the PMEM. As shown in
Figure 2, random access to the PMEM can be 4X slower than se-
quential writes. CLEVEL has a bottom-to-top searching strategy in
its multi-level structure. It has to search all of the possible buckets
to ensure the key does not exist before any insertion. Searching
the randomly located buckets introduces large read amplification,

causing its PMEM I/O volume 5× more than TURBO30, as shown
in Figure 6f.

PositiveRead.We see significant performance improvement for
TURBO16 over CCEH16. The source code of CCEH16 implements
double hashing for read, which aims to increase load factor at
the cost of larger read amplification. As we can see in Figure 6g,
CCEH16 has more I/O than TURBO16. TURBO16 also has better
read performance than DASH16. This is due to DASH16’s higher
I/O volume because of the stash search. For 30-byte key-value items,
TURBO30 has up to 3X throughput improvement over the others.
The major reason is that TurboHash uses sequential read as much
as possible to minimize read amplification and thus has the least
I/O volume, as shown in Figure 6g.

Negative Read. TurboHash has the best negative-read perfor-
mance among the schemes. A major reason is that it reads much
less amount of data during the key search (see Figure 6h). Turbo-
Hash reads only KV items before the end of a search path. DASH16
has to search all the target buckets and the stash buckets. CCEH
also needs to search its entire scope. CCEH30 reads more data than
CCEH16 because CCEH30 doubles the bucket size to accommodate
large key and value, causing more data to be read in a probing
scope. CLEVEL30 and CLHT30’s search is on a path consisting of
non-contiguous memory locations, which compromises the perfor-
mance. With reduced search paths and sequential PMEM access,
the negative read performance of TurboHash is much higher than
the others (Figure 6c).

Update. In the Update experiment all existent KV items are up-
dated. Update is a special case of insert. Compared to Insert through-
put, TURBO16’s Update throughput improves the most (almost 2
× as high as its Insert throughput). There are two reasons. One
is that Update’s search path is shorter than Insert’s. The other is
that Update does not cause shard rehashing. TURBO30’s perfor-
mance is lower than CLHT30, this is because CLHT30 uses 30-byte
bucket size and does in-place update, while TURBO30 applies indi-
rection for variable-size KV items and out-of-place update. Hence,



SYSTOR ’23, June 5–7, 2023, Haifa, Israel F. Last1 et al.

avg median p99

2
4
6
8

10
12
14

N
or

m
al

iz
ed

 L
at

en
cy

15
13

.9
 n

s

11
14

.3
 n

s

38
65

.7
 n

s

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(a) Insert Latency.
avg median p99

2
4
6
8

10
12
14
16

N
or

m
al

iz
ed

 L
at

en
cy

55
7.

8 
ns

51
6.

3 
ns

86
1.

3 
ns

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(b) Positive-Read Latency
avg median p99

2
4
6
8

10
12
14
16

N
or

m
al

iz
ed

 L
at

en
cy

45
2.

2 
ns

48
1.

8 
ns

79
3.

7 
ns

TURBO16
CCEH16
DASH16
TURBO30
CCEH30
CLEVEL30
CLHT30

(c) Negative-Read Latency

Figure 7: Latency comparison between hash tables (120 million insertions and 160 million reads with 16 threads)

Insert Positive
Read

Negative
Read

0

2

4

6

8

10

12

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

9.
0M

op
s/

s

31
.7

M
op

s/
s

9.
1M

op
s/

s

Insert Positive
Read

Negative
Read

0

200

400

600

800

P
m

em
 I/

O
 (G

B
)

TURBO16
CCEH16

DASH16
TURBO30

CCEH30
CLEVEL30

CLHT30

Write I/O

Figure 8: Throughput and PMEM I/O volume (120 million
Inserts and 160 million Reads using 16 threads). Grey bars
in the right graph indicate the portion of write volume.

TURBO30 introduces more I/O because the old items have to be
recycled, as shown in Figure 6i, TURBO30 has 30% more I/O than
CLHT30. Though CLHT30’s performance is higher, it lacks the
ability to support variable-size KV items.

Delete. TurboHash achieves the highest Delete throughput be-
cause it has the lowest I/O volume due to its shorter and sequential
search paths Note that Delete is not implemented in CCEH.

4.3 Latency Measurements
In this section, we evaluate the read/write latency of all hash tables.
We use 16 threads to write 120 million KV items. Each thread sends
10 million read requests.

As shown in Figure 7, TurboHash almost always has the lowest
latency among the hash tables in different types of workloads (Posi-
tive Read, Negative Read, and Insert). By applying the linear probing
and using only necessary probing length, TurboHash achieves the
lowest I/O volume. It also avoids random access to the PMEM. As
shown in Figure 8, CCEH16 has 4× I/O volume as much as that of
TURBO16 for Negative Read, because it reads more buckets than
necessary to find a non-existent key. The extra I/O leads to the
higher latency.

In most of the experiments, TURBO16 outperforms all the others.
It is because TurboHash only probes the necessary buckets during a
search. CCEH30 has 3×, 5×, and 5×more I/O volume than TURBO30
for Positive Read, Negative Read, and Insert, respectively. In addition
to its large read volume and random access, CCEH30 amplifies
write volume in its support of 15-byte atomic writes with undo

logging. Thus, CCEH30 has the largest I/O traffic and the worst
latency for 30-byte KV items. CLEVEL30 has 3× higher average
Insert latency than TURBO30. There are several reasons. First, it
carries out the search from the bottom to the top levels of its multi-
level hash table before an insertion can be carried out. That is, a
fixed overhead is added to any Insert. Second, its bucket size (64 byte)
does not match the PMEM access block size (256 bytes). Therefore,
each read to a bucket introduces 4× read amplification. As we can
see in the left graph of Figure 8, CLEVEL30 has 2.5× more I/O
volume than TURBO30. Third, as buckets on the search path are
non-contiguous in the PMEM, CLEVEL30 introduces more random
access on the PMEM,which compromises latency. As a consequence,
both the write latency and throughput are compromised, as shown
in Figure 7a and the left graph of Figure 8.

For average Positive Read latency, TURBO30 is about 5% lower
than CLEVEL30. The improvement is not significant even though
CLEVEL30 has more I/O and random access. This is because current
load factor for both hash tables is around 50%, which means that
most of keys can be found at their home buckets in the search
paths. The performance gap is more noticeable for Negative Read.
We see 2× lower average read latency for TURBO30 compared
with CLEVEL30, which has to search all the buckets (around 4 to
8) at random locations. CCEH30 has the highest read latency. As
shown in the right graph of Figure 8, CCEH30 generates some write
volume at the PMEM during service of read requests. It places a
read lock in the PMEM and frequently updates the lock, which
degrades its latency.

CLHT30’s latency is similar to that of CLEVEL30. For Insert,
it also reads all the buckets at random locations along its search
path (a linked list) before any insertion. So the I/O amplification and
write latency are both high. As a consequence, the write throughput
becomes lower, which is only 25% of TURBO30, as shown in the
left graph of Figure 8.

4.4 Results of YCSB Benchmarks
The Yahoo! Cloud Serving Benchmark (YCSB) [7] is a popular bench-
mark used to evaluate performance of NoSQL databases. We wrote
a test bench for the hash tables to support YCSB benchmarks, which
generate uniform workloads of different access behaviors (“Load",
“A",..“F") (see Fig 9). As the results for skewed workloads are similar
to that for uniform workloads, we omit their results due to space
limits. We run 20 threads and send 10 million requests in each
workload. For the all-write workload ("Load") that loads 120 million
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items to the hash table, as expected TurboHash (either TURBO16 or
TURBO30) has a higher throughput than others, as shown in Fig 9.
Each of the other workloads starts after the "Load" and consists
of only or mostly read requests. For all the workloads, TurboHash
has up to 2.6× higher throughput than CCEH. CCEH30 has the
lowest throughput, as it always requires a bucket lock for reads.
The extra write due to lock acquisition during a search compro-
mises its performance. TURBO30 has 1.5×-2.5× higher throughput
over CLHT30 and CLEVEL30, except for workload F. Workload F
contains half of update requests, and as mentioned in Section 4.2,
TURBO30 introduces more I/O than CLHT30 because of CLHT30’s
out-of-place update to support variable-size key-value pairs.

4.5 Load Factor
Load factor is a critical metric measuring a hash table’s space effi-
ciency. One may trade space efficiency for access performance of
a hash table. TurboHash achieves both space efficiency and high
performance with short search path and sequential PMEM access.
In this section we compare load factor variations during insertion
of 100 million KV items in the hash tables. The results are shown
in Figure 10.

The maximum load factor of CCEH30 is less than 44% because
it only probes at most 4 buckets before a hash collision occurs.
CCEH16 has a higher peak load factor (70%) because the implemen-
tation optimized by its inventors enables double hashing inside the
segments. Though both DASH and TurboHash achieve the highest
peak load factor ( 85%), TurboHash has a much higher through-
put (see Figure 6). Though CLEVEL30 and CLHT30 can achieve
similarly high peak load factor ( 80%), they allowmore flexible place-
ment of KV items for collision resolution, which leads to probing
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at random PMEM locations and compromises access performance.
TURBO30 always searches buckets sequentially for strong spatial
locality, which produces up to 8× higher performance in terms of
both throughput and latency (see Figure 7).

4.6 Probing Distance
To evaluate the probing efficiency in terms of probing distance,
we measure the distance with the searching of non-existent keys
in TurboHash under different load factors. As shown in Figure 11,
though the probing distance increases with the load factor, its im-
pact on the distance is limited. First, the increase even with a large
load factor is still small. For example, with the 80% load factor, the
longest distance is only 6 (much shorter than the probing scope size,
which is 16) and the average distance is 1.34. Second, long distances
hold only a small fraction of all of the distances in a histogram
(note that the graph is of a logarithmic scale).

As slots with deleted keys do not break a search path, they may
unintentionally make the path longer and compromise probing
efficiency. To observe the effect, for each of the hash table shown
in Figure 11(a), we delete all of its keys and then insert another set
of keys to the same load factor level. We then redo the experiments
to obtain a new set of histogram graphs (see Figure 11(b)) Now
with a high load factor, such as 80%, the average probe distance
for non-existing keys increases to 6.13, which causes the average
negative-read latency increases to 1.67𝜇s (from 0.48𝜇s), as shown
in Figures 12(a) and (b). However, this experiment represents a rare
scenario. And an easy remedy exists. When it is determined that
there are too many deleted keys in a shard, TurboHash may conduct
a garbage collection operation, which is a special shard rehashing,
to remove the deleted keys. The only difference of this special shard
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rehashing from a regular one is that it will keep the new shard of
the same size. Figure 12 shows the latency histograms before and
after a delete-and-reinsert, as well as after a garbage collection. It
shows that while a delete-and-reinsert operation can increase the
latency, especially for the long-tail latency of negative search, its
good performance is recovered after a garbage collection.

4.7 Shard Rehashing
The rehashing time is proportional to the shard size. Each rehash-
ing doubles number of buckets in the shard, and each key will be
relocated to a bucket in the new shard. Because the shard size is
doubled, TurboHash can simply double the index of a bucket in the
old shard (a bucket array) to obtain the index of a bucket in the new
shard where all of its keys are relocated. Even if a key is larger than
8 bytes and the full key is not in the bucket, the relocation doesn’t
involve additional PMEM access because the hashed keys are stored
in the table. For a shard of 8192 buckets, the average rehashing time
is 4 ms. While the rehashing operation and its impact on the tail
latency can hardly be avoided in any hash table design, TurboHash
has its unique design that helps to bound its impact. TurboHash
assumes a large number of shards in its design by over-provisioning.
For a hash table of 128K shards and each shard initially of 16 buck-
ets, it can store 10 billions 16-byte KV items when a shard is resized
to 8192 buckets. At this time the hash table occupies 256GB PMEM
and 1 MB DRAM for a directory of 128K shards. The 1MB directory
can be effectively buffered in the LLC cache for high performance.
For hosting a large KV store, the directory can be comfortably set
at a larger size to accommodate more relatively smaller shards with
little concern on its DRAM demand.

5 RELATEDWORK
While hash tables have been studied in many works [14, 21, 22, 29,
34, 35], TurboHash’s focus is on the design of a high-performance
dynamic hashing by fully exploiting Intel OptaneDC PMEM’s block-
access-like performance characteristic. As commercial persistent
memory has been available in recent years, a well-designed hash
table for persistent memory is on demand to leverage PMEM to
provide high performance service. There have been some works
on designing hash tables for PMEM, such as PFHT [9], Level hash-
ing [45], CLevel hashing [6], CCEH [27], and P-CLHT [24]. None
of the works are aware of and accommodate the performance im-
plication of the PMEM’s internal 256B-block access.

PFHT [9] is a variant of cuckoo hashing for persistent memory
that avoids cascading writes by allowing only one cuckoo displace-
ment. It uses a stash to prevent full resizing and improves the load
factor. Level hashing[45] has two hash tables, making it a two-level
structure (top level and bottom level). It adopts a fine-grained lock-
ing and each insertion may lock up to two slots. For both PFHT
and Level hashing, there can be at least two block writes when an
insertion causes the relocation of existent kV items to make room
for new items. Unlike them, TurboHash only has one 256B block
write, and therefore has better write performance.

CLEVEL hashing[6] is a variant of the level hashing. It has eight
8-byte slots in the 64-byte bucket. Each slot stores the pointer
to a KV item. It uses the Compare-and-Swap (CAS) primitive to
atomically change the pointer from the old version to the new

version to support lock-free reads. As we have mentioned, writing
a new version and updating the pointer lead to two block accesses.
P-CLHT[24] is a linked-list-based persistent hash table. Each bucket
of P-CLHT is of 64 bytes and can store three 16-byte KV items. This
may introduce 4× read amplification in the PMEM as the bucket size
is 64 bytes, a quarter of the PMEM’s block size. Different from them,
TurboHash confines the data and metadata within one 256B PMEM
block to minimize access to the raw PMEM for higher throughput.

CCEH [27] is a linear-probing-based hash table. It needs to search
all of the buckets on the probing path to know if a key exists in
the hash table because Delete in CCEH leaves holes on the path. To
avoid holes during linear probing, "deletion can be implemented by
rearranging the elements" [22]. However, this may require two 256B-
block writes in the PMEM for the rearrangement: one is removing
the tail element of the search path, and the other is overwriting the
deleted element with the tail element. FolkloreHT [26] uses dummy
elements (tombstones, replacing the key with DEL_KEY mark) for
deletion to avoid the rearrangements. However, the deleted space
will not be available for future insertions. Inconsistencies may occur
if it attempts to reuse the deleted space because concurrent readers
may read the deleted value when a concurrent writer replaces the
DEL_KEY with new key. Unlike them, TurboHash establishes the
search path and avoids two 256B block writes in deletion with the
help of its near-place update.

Dash [25] proposes 256-byte bucket design, similar to Turbo-
Hash. However, they introduce stash buckets and re-displacing KV
items when a hash collision happens, which causes more write/read
amplification. IcebergHT [33] consists of three levels. Level 1 is
a static table where items are hashed to a single bucket. Level 2
is similar to a cuckoo hash table where items are hashed to two
buckets. Level 3 consists of a simple chaining hash table. A negative
search in IcebergHT has to read at least 4 buckets, while TurboHash
just reads around 2 buckets on average on the search path.

6 CONCLUSIONS
We introduce TurboHash, a persistent hash table designed for high-
performance key-value stores in this paper. By enabling out-of-
place update at a cost equivalent to that for an in-place write,
conducting probing on a path sequentially and only for a nec-
essary length, and utilizing Intel Optane DC’s hardware feature,
TurboHash minimizes the PMEM I/O traffic and achieves 2× to 8×
improvement of access performance over state-of-the-art PMEM
hash table designs in terms of both throughput and latency.

Source code of our TurboHash implementation can be found at
https://github.com/hansonzhao007/TurboHash.
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